TETRAHEDRON REPORT NUMBER 76

PREPARATION OF DERIVATIVES AND ANALOGS OF THE MACROCYCLIC OLIGOMERS OF ETHYLENE OXIDE (CROWN COMPOUNDS)

JERALD S. BRADSHAW* and PAUL E. STOTT Chemistry Department and Thermochemical Institute,† Brigham Young University, Provo, UT 84602, U.S.A.

(Received in UK 20 July 1979)

CONTENTS

1. Introduction

- 2. Purpose and Scope
- 3. Simple Cyclic Oligomers of Ethylene Oxide (Crown Compounds)
 - A. Basic Systems and Variations
 - **B.** Functionalized Derivatives
 - C. Bicyclic Systems
 - D. Macrocyclic Acetals of Ethylene Oxide Oligomers
- 4. Macrocyclic Oligomers of Ethylene Oxide Fused to Aromatic Systems
 - A. 1, 2-Benzo and Naphthaleno Derivatives
 - B. o- and m-Xylyl Derivatives
 - C. p-Xylyl, p-Benzeno and Cyclophano Crown Ethers: The π Cloud as a Binding Site D. Fusion to Heterocyclic Systems
- Alternative Heteroatoms
- A. Sulfur
 - **B.** Phosphorus
 - C. Nitrogen
 - D. Cryptands: A Special Case of Functionalization on Nitrogen
- 6. Chiral Crown Ethers
 - A. Chiral Crown Ethers Derived from Binaphyl Substrates
 - B. Chiral Crown Ethers Derived from Tartaric Acid
 - C. Chiral Crown Ethers Derived from Carbohydrates
 - D. Chiral Crown Ethers Derived from Miscellaneous Sources
- 7. Polymer-Bound Macrocyclic Polyethers
- 8. Miscellaneous Systems
 - A. Novel Ring Closures
 - B. Carbonyl Oxygens in the Macrocycle
 - C. Anion Complexing Agents
 - D. Acyclic Polyethylene Glycol Derivatives

1. INTRODUCTION

The importance of macrocyclic ligands has been recognized for some time. The important biological molecules chlorophyl and hemin are both macrocyclic pyrroles which bind magnesium and iron respectively. More recently, large numbers of macrocyclic antibiotics (e.g. depsepetides, macrolides, ferroximes, etc.) have been isolated and their roles as ligands in complexing various alkali and transition metals has been identified.

Early exploration into the synthesis of macrocyclic multidentated ligands centered on the polyaza compounds and their relationship to porphorins in the complexation of transition metals. Although oligomers of ethylene oxide¹ and even its cyclic oligomers² have been know for some time it was not until the pioneering work of Pedersen in 1967 that the tendency of these cyclic oligomers (referred to as "crown ethers" by Pedersen) to strongly bind alkali and alkaline earth metals was recognized.³

The exploitation of the tendency of crown ethers and their derivatives and analogs to strongly bind certain cations has followed two paths. Both are based generally on the fact that the small and hydrated alkali or alkaline earth cations become large and lipophilic as crown complexes. This allows the metal ions to be readily extracted into organic solvents. Crown complexes have therefore been used extensively as phase transfer catalysts.^{4,5}

The second major area of utilization is additionally dependent on the cation selectivity of this class of ligands. Because the macrocycles contain hydrophilic cavities of specific sizes, different macrocycles exhibit selectivity for certain cations. This has resulted in a number of potential applications in ion transport and separation schemes.

The number and areas of crown ether applications are rapidly growing. In the five-year period 1972-76 there were only 166 references to the basic crown compounds (18-crown-6, 15-crown-5, dibenzo-18-crown-6, dicyclohexano-18-crown-6). In 1977 there were 93 such references and in 1978 there were 140. Of the 1978 publications more than 22% are patents, primarily in the areas of medicinal, polymer, photo, and separations chemistry. Specific applications of the crown ethers have recently been reviewed.⁴⁻⁷

2. PURPOSE AND SCOPE

As the availability and utility of crown compounds has become more generally known, many workers have sought to modify, by a variety of devices, the physical and chemical properties of these ligands. There now exists a considerable body of information concerning the functionalization and modification of crown ethers and related compounds. To date, this work has not been categorized and reviewed. As a result, some current work continues to be duplicative. It is the purpose of this review to provide such a summary and, wherever possible, to discuss the purpose for and the results of such modifications. Since the syntheses of basic crown systems has already been reviewed extensively,⁶⁻⁹ only a brief discussion is presented in order to provide a background for the reader. In some cases, segments of this work have been recently reviewed. In such instance only a cursory discussion is provided in deference to the existing review. In most cases only ligands containing oligomers of ethylene oxide will be discussed. For example, the well known macrocyclic polyaza ligands (porphorins and cyclams, etc.) are not discussed.

3. SIMPLE CYCLIC OLIGOMERS OF ETHYLENE OXIDE (CROWN COMPOUNDS)

(A) Basic systems and variations

In his initial report, Pedersen reported the synthesis of the cyclic hexamer (18-crown-6) via a Williamson ether synthesis, which proceeded in a low yield (eqn 1).³ Cram, Liotta *et al.* later improved

$$HOICH_{2}CH_{2}OI_{5}CH_{2}C$$

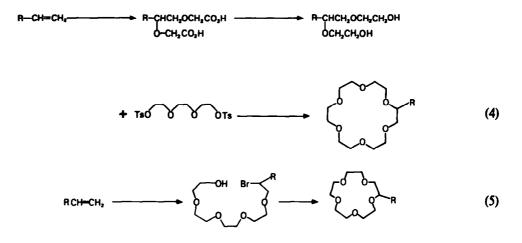
the yield of 18-crown-6 to 25% by using triethylene glycol and triethylene glycol dichloride and a novel purification procedure based on the formation of an acetonitrile complex.^{10,11} Similar procedures for the synthesis of 12-crown-4 and 15-crown-5 have been introduced.¹² Reese and coworkers found that the use of a slight deficiency of base and a large excess of the chloro compound gave improved yields of 18-crown-6 and nearly tripled the yield of 15-crown-5 (to about 30%).¹³ The dichloride has been replaced as a reactant by the oligoethylene glycol ditosylate in some procedures.¹⁴ A novel modification of the ditosylate procedure has recently appeared (eqn 2).¹⁵ Significantly, the use of hexaethylene glycol in this procedure gave a 75% isolated yield of 18-crown-6.¹⁵

All of these procedures are variations of the Williamson either synthesis. Dale has developed an alternate method based on direct acid catalyzed oligomerization of ethylene oxide using a cationic template.^{16,17} Varying the cation allows adjustment of the product ratios (eqn 3). Yields are generally

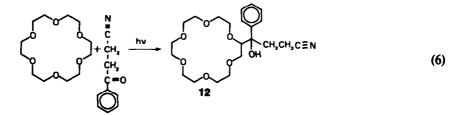
$$x \begin{bmatrix} u_{1} & & & \\ u_{2} & & & \\ u_{3} & & & \\ \ddots & \ddots & \ddots \end{bmatrix}$$
(3)

only about 10% based on ethylene oxide. The trimer, heptamer, and octamer can be made by similar processes.¹⁸ Both the Cram-Liotta method and the Dale method are currently utilized in small scale commercial production of 12-crown-4, 15-crown-5 and 18-crown-6.

(B) Functionalized derivatives (Table 1)


Several approaches have been utilized to prepare cyclic ethylene oxide oligomers which are substituted on one or more carbon atoms. Nearly all of these involve cyclization of the macrocycle in the final step.

1. Carbonyls in the macrocycle. Diacids or their derivatives may be reacted with glycols or their



derivatives to produce macrocycles such as the dioxo compound shown above. Inclusion of the ester functions causes increased rigidity in the macrocycle and results in lower cation binding constants. In addition, the ester linkage is labile. This class of compounds has recently been thoroughly reviewed.¹⁹

2. Macrocycles with alkyl side chains. Italian chemists, Cinquini and Tundo, recognized the importance of favorable water/organic solvent partition coefficients for efficient phase transfer catalysis. They prepared a series of alkylated 18-crown-6 compounds via a rather tedious route, in order to successfully shift the partition in favor of the organic phase (eqn 4).²⁰ A more convenient route to such compounds was later reported by Okahara *et al.* (eqn 5).²¹

Montanari *et al.* later prepared ω -aminoalkyl substituted crowns from undec-10-enenitriles by a method similiar to eqn (4).²² The inclusion of such reactive functional groups of the side chain allows for the attachment of the macrocycle to polymer supports or may provide additional binding sites. Reactive functionality also results from the photo chemical reaction of the crown with aryl ketones.²³ In order to obtain reasonable yields, the ketone must include some functional group that can be complexed by the macrocycle (e.g. potassium carboxylate, nitrile, etc.) (eqn 6).

Several alkylidenyl derivatives of 16-crown-5 and 19-crown-6 have been prepared from 3-chloro-2chloromethyl propene (eqn 7).²⁴ The alkenes can readily be converted to a large number of functional

groups. Even though inclusion of a three carbon bridge often results in lower cation binding, these workers report that the ligands were efficient phase transfer catalysts.

Other crown compounds containing substituents attached to a three carbon bridge were prepared by the potentially useful reaction between cyclic formals and alkenes (eqn 8).²⁵

(8)

3. Macrocycles derived from pentaerythritol. In the early 1970s, workers at DuPont prepared a series of crown ethers derived from 3,3-bis-(chloromethyl)oxetane (a pentaerythritol derivative). The resulting products are spiro linked to one or two oxetane moeities. Such functional groups can readily be polymerized.^{26,27}

Stoddart and Coxon subsequently prepared additional compounds of this type, as well as others derived from 5,5-bis(hydroxymethyl) dioxolane.^{28,29} Reduction of the oxetane or hydrolysis of the dioxolane substituents gave alkyl and hydroxyalkyl substituted crown compounds. These types of crowns have three carbon bridges. The stability constants of their potassium complexes are reported to be lower than those of the corresponding two carbon bridged ligands.²⁷

Table 1 contains a listing of functionalized derivatives of the simple crown ethers except the diester compounds(3. B.1.) which are reviewed elsewhere.¹⁹

Structure	Substituent(s)	No.	anp(bp)	Yield [®]	Ref
	R				
	CH ₃ n-C ₄ H ₉	1		41	15
<u> </u>	n-Č ₄ Ho	2	(120-125/		
-0 0-("			0.2)	20	21
ر ^م و	^{n-C} 6 ^H 13	3	(130-134/		
a	• 15		0.1)	11	21
1-4	CH2OCH=CH2	4		41	15
	<u>R</u>				
	сн3	5		53	15
\frown	^{n-C} 10 ^H 21	6	oil	41	20
به فر	n-C ₁₄ H ₂₉	7	oil	35	20
-Y'	(CH2) NHAC	8			22
v v∕	n-C20H41	9	41-42	33	20
LaJ	(CH2)9NHC2H5	10			22
\mathbf{v}	C(OH) (Ph) CH2CH2CO2CH3	11		10	23
5-1 6	C(OH)(Ph)CH2CH2CH	12	oil	17-20	23
	C(OH)(Ph)CH2CH2CO2H	13		12	23
	C(OH)(Ph)CH2CH2CO2K	14		21	23
	C(OH)(Ph)CH3	15	oil	9	23

Table 1. Functionalized derivatives of the simple cyclic oligomer of ethylene oxide (crown compounds)

Table 1	. (<i>Co</i>	utd.)
---------	---------------	-------

Structure	Substituent(s)	No.	mp(bp)	Yield [®]	Ref
Ph		16	oil		23
		17			30

R' R'	<u>n=1</u>	R ¹	R ²				
\cap		=01	 Լ	20	(115-120)	1	
~ ~ ~			-		.005)	45	24
\sim		H	CH_OH	21	oil	40	24
4 a ž		H	OE	22		good	32
					oil	27	24
20-26		CH3	OH	23	oil	35	24
		=0		24	oil	44	24

o=2

=CH2 (120-125/ 25 .005) 66 24 CEL OH 26 --24

25 28 ----

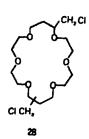


Table 1 (Contd)

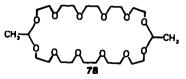
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Structure	Substi	tuent(s)	No.	mp(bp)	Vield[®]	P
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_					
$\begin{array}{c} 10) & 42 \\ \text{oil} & 3 \\ 29-35 \\ 29-35 \\ 2 \\ 31 \\ (100-120) $	A			2ġ	(97-99/		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X	v		23		47	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ρ۹	1		30			-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	XXn	•		30			,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2		31			-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29-35					32	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3		32			2
$\begin{array}{c} 1 & 60 \\ 6 & 34 & 42-43 & 35 \\ 8 & 35 & (250-260/) \\ & & & & & & \\ 1 & & & & & & \\ 1 & & & &$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6		34			2
1) 11 2 1) 12 1 1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8		35			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	n					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	للارميك			36	163-165	7	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\sim \sim	•					2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\sim \sim	$\sqrt{2}$					2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	La J	2		38			2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(° Sh						
$\begin{array}{c} 40 & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $	36-38	R ¹	R ²				
$\begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ &$	R' R?			39	99		2
syn CH_OOR CH_OOR CH_OCH_2Ph 42 22 anti CH_OOR CH_OOR CH_OCH_2Ph 43 23 syn CH3 CH2OCH2Ph 44 24 R' R ² anti CH3 CH2OCH2Ph 45 25 syn CH3 CH2OR 46 25 39-47 anti CH3 CH2OH 47 25	_ک			40			2
syn CH_OR CH_OCH_2Ph 42 2 anti CH_OOH CH_OCH_2Ph 43 2 syn CH_3 CH_2OCH_2Ph 43 2 R' R ² anti CH_3 CH_2OCH_2Ph 44 2 R' R ² anti CH_3 CH_2OEH_2Ph 45 3 39-47 anti CH_3 CH_2OH 46 2	$\sim \sim$						
syn CH_OOR CH_OOR CH_OCH_2Ph 42 22 anti CH_OOR CH_OOR CH_OCH_2Ph 43 23 syn CH3 CH2OCH2Ph 44 24 R' R ² anti CH3 CH2OCH2Ph 45 25 syn CH3 CH2OR 46 25 39-47 anti CH3 CH2OH 47 25	\mathcal{V}	CH_OH	CH ₂ OH	41	77		2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\langle \rangle$			42			2
R'R ² anti CH ₃ CH ₂ OCH ₂ Ph 45 2 syn CH ₃ CH ₂ OH 46 2 39-47 anti CH ₃ CH ₂ OH 47 2	$\sim_{\varphi} \varphi^{\prime}$			43			2
<u>syn</u> CH ₃ CH ₂ OH 46 2 39-47 <u>anti</u> CH ₃ CH ₂ OH 47 2	\searrow	syn CH ₃		44			2
<u>syn</u> CH ₃ CH ₂ OH 46 2 39-47 <u>anti</u> CH ₃ CH ₂ OH 47 2	R' R2						2
							2
Ph 48 86~87 2 人	39-47	anti CH3	сн ₂ он	47			2
	Ph 人			48	86-87		2
		_					
	ں کم	2					
a de la companya de l	l	ړ					
ر م م		η.					
	Γ 1 ~9 , '	ρ γ					
	$\sim \sim \sim$	' እስሎት					

^aYields reported are on an overall basis and are based on readily available starting materials.

(C) Bicyclic systems (Table 2)

It was hypothesized that the addition of an oligoethylene oxide bridge across the cavity of the macrocycle would lead to increased stability constants for the macrocyclic ligand-cation complexes. The first report of such a system from pentaerythritol appeared in 1974.²⁸ Unlike the cryptands (see Section 5. D.), these ligands exhibited only weak tendencies to bind metal cations.²⁹ Two other systems prepared from glycerol have subsequently appeared.^{33,34} Very high binding constants with cations are reported for one system.³⁴ Unlike the pentaerythritol based bicyclic compounds, those based on glycerol retain the repeating two carbon to one oxygen system of the simple crown ethers which were earlier shown to complex very strongly with cations.³

Table 2 contains a list of bicyclic oligoethylene oxide compounds.


Table 2	2. Вісу	clic o	ligomers	of et	hylene	oxide	(and	deriva	atives)
									_	_

Structure	Sub	stituent(s)	No.	ap(bp)	Yield ^a	Ref
R'	R1	R ²				
*	CH_OH	CH_OH	49	64-65		28,2
	CH,OCH,P	h CH2OCH2Ph	50	48-49	30	28,2
$\langle \langle \langle \rangle \rangle$	CH2OMs	CH2OMs	51	90-91		28,2
bbd	CH_3	CH3	52	59-60		28,2
R ² 49-53	CE3		53	oil		28,2
сн, Са а	ду-сн,		54	109-11		29
*	*note c	n 2 3 hirsl centers	55 56		1.5 1.5	33 33
55,56						
(tot		- <u>n</u> 1	57			34
T D		2	58	-		34
57,58						

²Yields are overall and are based on readily available starting materials.

(D) Macrocyclic acetals of ethylene oxide oligomers (Table 3)

Pedersen initially prepared three macrocyclic formals and reported that they possessed only a weak affinity for alkali metal cations.^{3,35} Very little interest was expressed in these compounds during the following decade. Another potential deficiency of these systems is their expected acid lability. Gold has recently demonstrated, however, that the rate of acid catalyzed hydrolysis of 78 can be diminished more than an order of magnitude by the addition of rubidium chloride.³⁶ Since macrocyclic ligands are

generally employed as their alkali metal complexes, acid lability may be less significant than earlier believed. Macrocyclic formals have been successfully used in the same manner as "normal" crown ethers to accelerate the conversion of butyl bromide to butyl acetate by reaction with potassium acetate.³⁷ Because they can be prepared in high yields from polyethylene glycols, renewed interest in this class of ligands may be justified.

Table 3 lists macrocyclic oligoethylene glycols which have been cyclized via formation of acetal or ketal linkages.

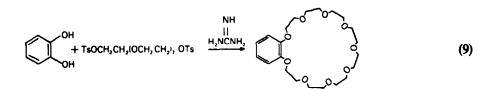
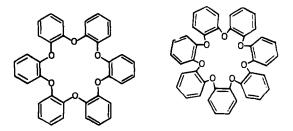

Structure	Substituent(s)	No.	mp(bp)	Tield	Ref
•	n				
~°`~~	0	59	27		
			(30/.001)	65	38,39
has					37
10- 0M	1	60	23.5		~~ ~~
59-63			(51/.001)	4/	38,39 37
	2	61			37
	3	62			37
	4	63			37
	_				
	<u> </u>	64		10	28 20
\sim^{n}	2	65	88 27	18 9.4	38,39 39
<u>እ</u> ግፈ	3	66	56.5	6.4	39
لہ ی <i>ا</i>	4	67	19	3.4	39
Land	5	68	38	2.0	39
	6	69	23	1.6	39
64-70	7	70	28.5	1.4	39
СН,	<u> </u>				
人	0	71	(60/0.2)		36
	1	72	(82/0.15)		36
	2	73	(120/.1)	13	36
71-74	3	74	(150/.05)	20	36
/-/•	<u> </u>	76	26-27		24
the start	2	75 76	36-37 61-62	1.5 4	36 36
снСн,	3	77	33-34	1	36
сн, сн,	4	78	52-53.5	1	36
75-78					
R' R ²	$\mathbb{R}^{1}\mathbb{R}^{2} = \bigcirc$	79	162	16	35,40
	$\mathbf{R}^1 = \mathbf{R}^2 = \mathbf{H}$	80	151-2	62	35,40
79,80					
Q.P		81	118	31	35,40
81					
		82	166-167	8	35,40
82					

Table 3. Macrocyclic acetals, formals, and ketals of ethylene oxide oligomers*


4. FUSION TO AROMATIC DERIVATIVES

(A) 1,2-Benzo and naphthaleno derivatives

The first crown compounds prepared by Pedersen were derived from catechol (1, 2-dihydroxybenzene) and were thus fused onto an aromatic system.^{3,40,41} A large number of such compounds were prepared with different glycols.^{8,9} The related 2,3-dihydroxynaphthalene system was also used. The high yield of the medium sized macrocycles (15 and 18 members) was attributed to templating the acyclic intermediate about the alkali metal cations. Subsequently, Cram *et al.* used this template effect around much larger organic cations to produce larger ringer systems. For example, benzo-27-crown-9 can be readily prepared in the presence of guanidinium ion with guanidine acting as the base (eqn 9).⁴² Potassium ions, however gave superior yields.^{42,43}

The preparation of 18-crown-6 and 21-crown-7, fused to benzene at every carbon, has also recently been reported.⁴⁴

In his first papers, Pedersen reported the reduction of several of the benzo-fused crown compounds to the corresponding cyclohexano-fused systems via catalytic hydrogenation.^{3,40,41} However, only two of the five possible isomers were obtained (*cis*-syn-*cis* and *cis*-anti-*cis*). The remaining isomers have been synthesized directly from *cis*-and *trans*- 1, 2-cyclohexandiol.^{45,46}

1. Functionalization on the macrocyclic ring (Table 4). Several derivatives bearing substituents on the macrocyclic ring have been prepared. All were synthesized from the corresponsing dihalo compounds and catechol or catechol derivatives. The di- and tetra-methylated compounds were used to study conformational changes during complexation.⁴⁷ Those with alkylidenyl and hydroxy functions were, or could be, utilized for further modification of the ligand.^{24,34} For example, compound 97 was converted to a series of bicyclic ligands (see Section 3. C.).³⁴

Table 4 lists functionalized derivatives of the 1,2-benzo macrocyclic oligoethylene oxides wherein the functional group is attached directly to the macrocylic ring.

Table 4.	1,2-Benzo	fused	macrocycles	functional	ized on	the	macrocyclic ring*	
----------	-----------	-------	-------------	------------	---------	-----	-------------------	--

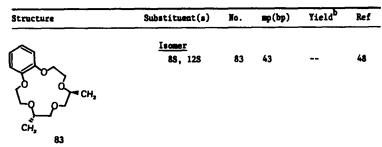


Table 4. (Contd.)

	I able 4. (Conto	L)			
Structure	Substituent(s)	No.	mp(bp)	Yield ^b	Ref
	7R,9R,185,205	84	199-200	6.7	47
сн, сн,	7R,9R,18R,20R	85	134	3.8	47
	7R,95,18R,205	86	92	1.9	47
رمر	7R,95,185,20R	87	160	8.4	47
	7R,9R,18R,205	88	120-122	31.1	47
I Т Сн, сн, 84-88	(B. 105. 170. 010				
СН, СН,	6R,10S,17R,21S	89	109-110	6.5	47
Ý	6R,10S,17S,21R	90	137	5.6	47
\sim	6R,10R,17R,21R	91	136-137	3.0	47
CH, CH,	6R,10R,17S,21S 6R,10R,17R,21S	92 93	121-122 84-86	••	47 47
89-93		94	oil	28	24
94	$\frac{R^1}{= CH_2}$ H CH_2OH	95 96	94-95 110-111	30 50	24 24
95,96					
04	syn isomer	97 98	160 164	••	34
아 人	anti isomer		lo4 nydrate)		34
C C C C C C C C C C C C C C C C C C C		(1	iyurace)		
97,98	<u> </u>				
See Tables 2 and 2	•]••				

^aSee Tables 2 and 3 also.

^bYields are overall and are based on readily available starting materials.

2. Functionalized on the aromatic ring(s) (Tables 5 and 6). Because they can be prepared with such a large variety of substituents on the aromatic ring, the benzo derivatives are the most versatile of the crown compounds. The fused aromatic ring of the benzo crown ethers is isoelectronic with veratrole (1,2-dimethoxy benzene). As would be expected, it is therefore very reactive towards electrophilic aromatic substitution. Additionally, substituted crowns may be prepared by a ring closure of substituted catechols with the usual glycol derivatives. A few simple alkylated derivatives of catechol are commercially available and are typically used in the preparation of alkylated, benzo crown ethers. In most cases, however, the substitution of electrophiles onto the aromatic ring of the crown compound, has proven to be a superior approach to the preparation of such substituted benzo crowns.

The majority of the substituted benzo crowns are prepared by nitration or acylation of the simple preformed benzo crown compound.⁴⁹ The nitro derivatives are readily reduced to the corresponding amines.⁵⁰ These may participate in condensation reactions,⁵¹ nucleophilic addition reactions,⁴⁹ diazonium reactions⁵⁰ or any reaction typical of the amine functional group. Although acylation of the aromatic rings has been done using aluminum chloride as a catalyst,^{52,53} phosphorus pentaoxide in anhydrous methanesulfonic acid has proved to be a superior medium.⁵⁴ Acyl derivatives may be converted to oximes,⁵² reduced to hydrocarbons^{55,56} or alcohols,⁵⁵ or subjected to Grignard reagents.⁵⁷

Substituted benzo derivatives have been used to study parameters affecting binding constants and kinetics,^{49,58} transport through synthetic and biological membranes^{56,59-64} and phase transfer catalysis.⁵⁵ They also provide reactive sites for attachment of additional binding sites,⁴⁹ spin labels,⁶⁵ or polymer supports.^{50,57,66-68} Substituents have also been attached to provide specific biological activity.⁵¹⁻⁵³ In addition, numerous other modifications of the ligand can be made once reactive substituents are provided.

For convenience, substituted benzo crowns derived via the cyclization of substituted catechols are tabulated in Table 5. Those derived by substitution onto the preformed benzo crown compounds are in Table 6.

Structure	Substituent(s)	No.	mp(bp)	Yield ^b	Ref
	R				
R	CH3	99	51.2-52	57	60,61
	t-Butyl	100	98 [°]	61	3,41
	വപ്പുവ	101	96-97	22	66
jo o	CH3CHOR	102	65-66	17	66
\sim	3			26	57
	CH_2=CH	103	43-44	10	66
99-111	2			22	57
	CHO	104	oil	31	57
			78-79	40	49
	CH(OH)CH2NHCH3	105	61		69
	CO ₂ H	106	180	20	70
	C0,CH,	107	82	16	70
	COC1	108			70
	CONTR(CH2)4CO2H	109			49
	CH2CH2NH2	110	90-92		69
			<i>JU-JE</i>		09
	- C C C - C	111	113-114		65
	н,	112	oil		69
	<u> </u>	113 114 115 116	124-125 88-89 89-91 83-84	17.4 12.8 12 9.6	70 70 70 70
-9 P-1 Lcola	-(CH2)8-	117	82	11.2	70
			-	-	

113-117

Table 5. Benzo crown ethers prepared by the cyclization of substituted catechols*

Structure	Substituent(s)	No.	mp(bp)	Yield ^b	Ref		
	e Sa	118	104	25	71		
III III III	رم کر	119	109-110	20	71		
$R \rightarrow O \qquad O$	$\frac{R}{CH_3}$ t-Butyl CHO CH(OH)CH_3 CH=CH_2 CH_3CO CO_2H COC1 COMH(CH_2)_3CH_3 CH_2 - N CH_2 - N CH_3 - CH_3	120 121 122 123 124 125 126 127 128 129	54-55 35-37 60-62 " 58-59 59-61 61-62 77.5-78.5 118-120 97-98 oil	52 62 25 32 25 11 20 8 16 13 10.6 29	60,61 3,41 49 57 57 66 57 66 66 49 49 49 72,73		
	$\begin{array}{c} \underline{R^{1}} \\ \underline{R^{2}} \\ \underline{CH_{3}} \\ \underline{CH_{3}} \\ \underline{n-C_{3}H_{7}} \\ \underline{n-C_{3}H_{7}} \\ \underline{n-C_{4}H_{9}} \\ \underline{n-C_{16}H_{33}} \\ \underline{n-C_{16}H_{33}} \\ \underline{n-C_{16}H_{33}} \\ \underline{cH_{3}CO} \\ \underline{CH_{3}CO} \\ \underline{CH_{3}CO} \\ \underline{CH_{3}CO} \\ \underline{CH_{3}CO} \\ \underline{cH_{3}CO} \\ \underline{n-C_{3}H_{7}CO} \\ \underline{n-C_{3}H_{7}CO} \\ \underline{n-C_{3}H_{7}CO} \\ \underline{n-C_{3}H_{7}CO} \\ \underline{n-C_{3}H_{7}CO} \\ \underline{H_{3}CO} \\ \underline{H} \\ \underline{CH(0H)CH_{3}} \\ \underline{H} \\ \underline{CH=CH_{2}} \\ \underline{H} \end{array}$	135 136 137	132-135 126-127 109-112 135-137 132-134 218-220 197-199 213-215 183-185 158-161 169-171 141-143 148-149	40 	55,74 59 3 41 75 63 63 63 63 63 63 66 66 66		

Structure	Substituent(s)	No.	mp(bp)	Yield ^D	Ref
	ସ୍ଥ୍ୟରେ ସ୍ଥ୍ୟ	142	151-153		66
	CH(OH)CH3 CH3	143	135-139		66
	CH=CH2 CH3	144	144-147		66
	$co_2 c_2 \overline{H}_2 co_2 \overline{c}_4$	Hg 145	~-		70
	co ₂ c ₄ H ₉ co ₂ c ₄	Hg 146			70
_ <u>n</u> 1	<u>R</u>	147	68-70		5
	CH ₃ CH(ØH)CH ₂ MHCH ₃		1 90- 192		6
147-148		149		12	75
		150	1 49-152		41

⁸Table includes compounds obtained by further modification of substituted benzo crown ethers which were derived by cyclization of a substituted catechol.

^bYields are overall and are generally based on commercially available catechol derivatives.

^CThe melting point originally reported was 43.5-44.5°C.³ This value has subsequently been found to be in error, and the value reported above was confirmed to be correct.

Structure	Substituent(s)		No.	mp(bp)	Yield*	Ref
R' Son	R ¹	R ²				
R ² L C S	NOz	Н	151	84-85 70-80	77 50	49
	NH ₂	н	152		_	50
151-159	N ₂ ⁺ BF ₄ ⁻	Ĥ	153		_	50
	CH=CH,	H	103	43.5-44.2	20-25	50
	Br	Н	154	66-68	57	49
	NO ₂	NO ₂	155	168	20	49
	CH ₃ CO	Ĥ	156	95-96.5	63	54
	C ₆ H ₁₃ CO	Н	157	4951	55	- 54
	C ₆ H ₁₃ CH(OH)	Н	158	wax	51	- 54
	C ₁₃ H ₂₇ CO	H	159	5557	26	54
\sim	$\frac{R}{NO_2}$		160	_	_	67
the off	NH ₂		161		-	67

160, 161

Table 6. Benzo crown ethers prepared by direct substitution onto the aromatic ring*

Structure	Substituent(s)	No. mp(bp)	Yield	Ref
\sim	R	162 70-72	56	49
		163 61-62	36	53
	CHO CH3CO	125 —	67	52
~~ o	n-C ₃ H ₇ CO	164 58-59	—	52
	cyclopropyl-CO	165 —	_	52
162-183	C ₂ H ₅ CO	166 —	_	52
102-185	cyclohexyl-CO	167 —	-	52
	CH ₃ C(=NOH)	168 110-111	ca 20	52
	π -C ₃ H ₇ C(=NOH)	169 104-105	—	52 52
	cyclopropyl-C(=NOH)	170 64-67 171 77-82	_	52 52
	C2H5C(=NOH) cyclohexyl-C(=NOH)	172 128-130	_	52
	CH ₃ C(=NOCH ₃)	173 79-80	ca 40	52
	$CH_3C(=NOCH_2Ph)$	174 66-68	ca 30	52
	Phenyl-C(=NOCH ₃)	175 70-71	ca 10	52
	Phenyl-C(=NOCH ₂ Ph)	176 —	-	52
	CH ₃ C(=NO-t-Butyl)	177 63-65		52
	$CH_3C(=NOC_2H_3)$	178 71-73	-	52
	CH ₃ C(=NO- <i>n</i> -hexyl)	179 47-48	-	52 52
	$CH_3C(=NO-\pi-decyl)$	180 42-43 181 66-67		52 52
	CH3C(=NO-COCH3) CH3C(=NO-COPh)	182 66-80	_	52
_	-			
CH3C (≈NO-(CH2)3-N))	183 113-114	ca 60	52
X (~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>X</u> =0	184	_	52
	n =NOH	185 124-126	_	52
184-185	J	186 112-114		~~
<u> </u>				
	Note: References 52 ar	nd 53 contain 119 r	eferences to ca	53 rbonyl ar
	Note: References 52 ar oxime substituted ben only a partial list of co	nd 53 contain 119 r zo-18-crown-6 con	eferences to ca	rbonyl ar
	oxime substituted ben only a partial list of co	ud 53 contain 119 ru zo-18-crown-6 con enpounds.	eferences to ca	rbonyl ar have give
	<pre>oxime substituted ben only a partial list of co R R CH₃CH₂CH₂CH₂CH₂CCO</pre>	nd 53 contain 119 ro zo-18-crown-6 con mpounds. 187 —	eferences to can appounds. We h	rbonyl ar have give 77
	oxime substituted ben only a partial list of co	ud 53 contain 119 ru zo-18-crown-6 con enpounds.	eferences to can appounds. We h	rbonyl ar have give
	 oxime substituted ben only a partial list of co R R CH₃CH₂CH₂CH₂CH₂CO Cr(CO)₃ 	nd 53 contain 119 ro zo-18-crown-6 con mpounds. 187 —	eferences to can appounds. We h	rbonyl ar have give 77
	 oxime substituted ben only a partial list of co R CH₃CH₂CH₂CH₂CH₂CO Cr(CO)₃ R^e Br 	nd 53 contain 119 re zo-18-crown-6 con mpounds. 187 — 188 123-24 189 —	eferences to can appounds. We h	rbonyl ar save give 77 58 78
	 oxime substituted ben only a partial list of co R R CH₃CH₂CH₂CH₂CH₂CO Cr(CO)₃ 	nd 53 contain 119 re zo-18-crown-6 con empounds. 187 — 188 123-24 189 — 189 — 190 245-248	eferences to can appounds. We h	rbonyl ar bave give 77 58 78 58
	 oxime substituted ben only a partial list of co R CH₃CH₂CH₂CH₂CH₂CO Cr(CO)₃ R^e Br 	nd 53 contain 119 re zo-18-crown-6 con mpounds. 187 — 188 123-24 189 —	eferences to can appounds. We h	rbonyl ar save give 77 58 78
	 oxime substituted ben only a partial list of co R R CH₃CH₂CH₂CH₂CH₂CO Cr(CO)₃ R Syn NO₂ anti NO₂ NO₂ 	ad 53 contain 119 re zo-18-crown-6 con empounds. 187 — 188 123-24 189 — 190 245-248 245-251 191 210-212 208-213	eferences to can npounds. We h — — — — — — — — — — — — — — — — — — —	rbonyl ar lave give 77 58 78 58 79 58 79
	 oxime substituted ben only a partial list of co R CH₃CH₂CH₂CH₂CC Cr(CO)₃ R Br Br Br syn NO₂ anti NO₂ NO₂ NO₂ 	187 — 187 — 188 123-24 189 — 190 245-248 245-251 191 210-212	eferences to can npounds. We h — — — — — — — — — — — — — — — — — — —	rbonyl ar lave give 77 58 78 58 78 58 79 58 79 41
	 oxime substituted ben only a partial list of co only a partial list of co order R CH₃CH₂CH₂CH₂CO Cr(CO)₃ R Br Br Br Br Syn NO₂ anti NO₂ NO₂ NO₂ NO₂ 	ad 53 contain 119 re zo-18-crown-6 con empounds. 187 — 188 123-24 189 — 190 245-248 245-251 191 210-212 208-213	eferences to can npounds. We h — — — — — — — — — — — — — — — — — — —	rbonyl ar lave give 77 58 78 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 70 77 58 70 58 70 58 70 58 70 58 70 77 77 58 70 77 58 70 58 70 77 77 58 70 77 77 58 70 77 77 78 79 77 78 79 78 79 79 79 78 79 79 79 79 70 77 77 78 79 79 79 79 79 79 79 79 79 79 79 79 79
	 oxime substituted ben only a partial list of co only a partial list of co order R CH₃CH₂CH₂CH₂CC Cr(CO)₃ R Br Br Br R Syn NO₂ NO₂ NO₂ NO₂ NO₂ 	ad 53 contain 119 re zo-18-crown-6 con empounds. 187 — 188 123-24 189 — 190 245-248 245-251 191 210-212 208-213	eferences to can npounds. We h — — — — — — — — — — — — — — — — — — —	rbonyl ar iave give 77 58 78 58 79 58 79 58 79 41 67 80
	<pre>oxime substituted ben only a partial list of co o R R CH₃CH₂CH₂CH₂CH₂CO Cr(CO)₃ R R R R Syn NO₂ NO₂ NO₂ NO₂ NO₂ NO₂ NO₂ NO₂ NO₂</pre>	ad 53 contain 119 re zo-18-crown-6 con empounds. 187 — 188 123-24 189 — 190 245-248 245-251 191 210-212 208-213	eferences to can npounds. We h — — — — — — — — — — — — — — — — — — —	rbonyl ar iave give 77 58 78 58 79 58 79 58 79 41 67 78 80 51
	<pre>oxime substituted ben only a partial list of co o R R CH₃CH₂CH₂CH₂CH₂CO Cr(CO)₃ R R R R R R R R R R R R R R R R R R R</pre>	187 — 187 — 187 — 188 123-24 189 — 190 245-248 245-251 191 210-212 208-213 177-236 — — —	eferences to can npounds. We h — — — — — — — — — — — — — — — — — — —	rbonyl ar bave give 77 58 78 58 79 58 79 58 79 41 67 80 51 68
	 oxime substituted ben only a partial list of co only a partial list of co or CH₃CH₂CH₂CH₂CO Cr(CO)₃ R Gr Br Br Br R syn NO₂ Anti NO₂ NO₂ NO₂ NO₂ NO₂ NO₂ NO₂ NO₂ SO₃H 	ad 53 contain 119 re zo-18-crown-6 con empounds. 187 — 188 123-24 189 — 190 245-248 245-251 191 210-212 208-213	eferences to can npounds. We h — — — — — — — — — — — — — — — — — — —	rbonyl ar iave give 77 58 78 58 79 58 79 58 79 41 67 78 80 51
	<pre>oxime substituted ben only a partial list of co o R R CH₃CH₂CH₂CH₂CH₂CO Cr(CO)₃ R R R R R R R R R R R R R R R R R R R</pre>	ad 53 contain 119 re zo-18-crown-6 con empounds. 187 — 188 123-24 189 — 190 245-248 245-251 191 210-212 208-213 177-236 — — — 192 139 193 155-158 194 178-184	eferences to can npounds. We h — — — — — — — — — — — — — — — — — — —	rbonyl ar lave give 77 58 78 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 58 79 58 58 58 79 58 58 58 58 58 58 58 58 58 58 58 58 58
	 oxime substituted ben only a partial list of co only a partial list of co or CH₃CH₂CH₂CH₂CO Cr(CO)₃ R gr Br Br Br Br Syn NO₂ Anti NO₂	ad 53 contain 119 re zo-18-crown-6 con impounds. 187 188 123-24 189 190 245-248 245-251 191 210-212 208-213 177-26 193 155-158 194 178-184 177-178	eferences to can npounds. We h — — — — — — — — — — — 64 88 — — — 75 — — ca 30	rbonyl ar lave give 77 58 78 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 79 58 87 59 58 87 58 79 58 87 58 87 58 87 58 87 58 87 58 87 58 87 58 87 58 87 58 87 58 87 58 87 58 87 58 87 58 87 58 87 58 87 58 88 87 58 88 87 58 88 87 58 88 88 88 88 88 88 88 88 88 88 88 88
	 oxime substituted ben only a partial list of co only a partial list of co or (CO)₃ R CH₃CH₂CH₂CH₂CO Cr(CO)₃ R syn NO₂ R syn NO₂ NO₂ NO₃ NO₃ NO₄ NO₄	ad 53 contain 119 re zo-18-crown-6 con empounds. 187 — 188 123-24 189 — 190 245-248 245-251 191 210-212 208-213 177-236 — — — 192 139 193 155-158 194 178-184	eferences to can npounds. We h 	rbonyl ar nave give 77 58 78 58 79 58 58 79 58 79 58 79 58 79 58 79 58 58 79 58 58 79 58 58 79 58 58 58 58 58 58 58 58 58 58 58 58 58
	oxime substituted ben only a partial list of co of R CH ₃ CH ₂ CH ₂ CH ₂ CC Cr(CO) ₃ R R Br Br R Syn NO ₂ anti NO ₂ NO ₂ NH ₂ Anti NH ₂ NH ₂ Anti NH ₂ NH ₂ NH ₂	ad 53 contain 119 re zo-18-crown-6 con impounds. 187 188 123-24 189 190 245-248 245-251 191 210-212 208-213 177-208 192 139 193 155-158 194 178-184 177-178	eferences to can npounds. We h — — — — — — — — — — — 64 88 — — — 75 — — ca 30	rbonyl ar nave give 77 58 78 58 79 58 79 58 79 41 67 80 51 68 41 58 81 58 81 58 81 58 67
	 oxime substituted ben only a partial list of co only a partial list of co or CH₃CH₂CH₂CH₂CO Cr(CO)₃ R syn NO₂ R syn NO₂ NO₂ NH₂ NH₂ NH₂ 	ad 53 contain 119 re zo-18-crown-6 con impounds. 187 188 123-24 189 190 245-248 245-251 191 210-212 208-213 177-208 192 139 193 155-158 194 178-184 177-178	eferences to can npounds. We h — — — — — — — — — — — 64 88 — — — 75 — — ca 30	rbonyl ar nave give 77 58 78 58 79 58 79 58 79 58 79 58 79 58 79 41 67 67 81 51 58 51
	oxime substituted ben only a partial list of co of R CH ₃ CH ₂ CH ₂ CH ₂ CC Cr(CO) ₃ R R Br Br R Syn NO ₂ anti NO ₂ NO ₂ NH ₂ Anti NH ₂ NH ₂ Anti NH ₂ NH ₂ NH ₂	ad 53 contain 119 re zo-18-crown-6 con impounds. 187 188 123-24 189 190 245-248 245-251 191 210-212 208-213 177-208 192 139 193 155-158 194 178-184 177-178	eferences to can npounds. We h — — — — — — — — — — — 64 88 — — — 75 — — ca 30	rbonyl ar nave give 77 58 78 58 79 58 79 58 79 41 67 80 51 68 41 58 81 58 81 58 81 58 67

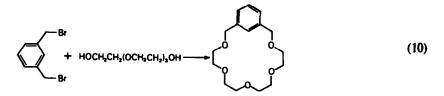
Table 6. (Contd.)

Structure	Substituent(s)	No. mp(b	p) Yiekd*	Rei
		197 —	-	51
NCH	\mathbf{Y}			
	но			
S		198 —	-	51
N				
s 11 /=	_	199 —	_	51
нисин-	осн,			
	syn CH3CO	135 213-215	_	63
	anti CH ₃ CO	136 197-199		63
	CH3CO CH3CO	194-201 200-208	85 84	63 54
	syn CH ₃ CH(OH) ⁴	200 197-199	70	55
	anti CH3CH(OH)4	201 164-167	_	55
	syn C ₂ H ₅ CO	202 195-196	_	63
	anti C2H3CO C2H3CO	203 182-184 173-179		63 63
	syn C ₃ H ₇ CO	137 183-185		63
	Ċ ₃ H ₇ ĊO ⁴	174-182	72	- 54
	anti C3H7CO C3H7CO	138 158-161 149-165		63 63
	C ₃ H ₇ CO ⁴	149-100	10	55
	iso C3H7CO	204 154-160	88	- 54
	syn C4H9CO	205 170-171	_	63
	anti C4H9CO C4H9CO	206 150-152 136-148	72	63 63
	C4H9CO C4H9CO	144-150	100	55
	iso C4H9CO	207 129-132	80	55
	iso C4H9CH(OH)	208 129-132	75	55
	tert-C4H9CO syn Phenyl-CO	209 146-159 210 200-201	85	54 63
	Phenyl-CO ^d	197-198	100	54,5
	anti Phenyl-CO	211 184-185		63
	Phenyl-CO	145-156 178-184	68	63
	Phenyl-CO [#] syn C₅HulCO	212 152.5 -		55
	<i>ija ojn</i> (100	153.	5 —	56
	anti C ₅ H ₁₁ CO	213 142.5 -		
	C ₅ H ₁₁ CO	143.	43	56 56
	syn C ₆ H ₁₃ CO	214 143-145	-	56
	C ₆ H ₁₃ CO	125-141	37	56
	syn C ₆ H ₁₃ CO	119.5–122 215 134–137	86	54 55
	C ₆ H ₁₃ CH(OH) syn C ₇ H ₁₅ CO	215 154-157	_	56
	anti C7H15CO	217 126-128	_	56
	C ₇ H ₁₅ CO		37	56
	С9H19CO syn C9H19CH(OH) ⁴	218 117-129 219 145-148	74 57	54 54, 1
	anti C ₉ H ₁₉ CH(OH) ^d	220 120-122	<u> </u>	54,
	syn C13H27COd	221 144-146	71 80	54, 5
	syn C ₁₃ H ₂₇ CH(OH) ⁴	222 145.5-147 223 123-127	_	55 54, 5
	anti C ₁₃ H ₂₇ CO ^a anti C ₁₃ H ₂₇ CH(OH) ^a	224 129-134	_	55
	C17H35	225 116-120	75	- 54
	anti C ₂ H ₃	226 121-123	CE 37	56
	anti C3H7 anti C4H9	132 111–113 227 96-98	ca 28 ca 30	56 56
	syn C ₄ H ₉	228 124-126	ca 35	56
	anti C ₅ H ₁₁	229 111-113	ca 38	56
	C3H11 iso C3H21	91- 94 230 97-105	72 72	55 55
	anti C_6H_{13}	230 97-103	72 ca 23	56 56
	syn C ₆ H ₁₃	232 109-111	ca 24	-
	anti C ₇ H ₁₅	233 92-94	ca 21	56 56

Structure	S	ubstituent(s)	No). mp(bp)	Yield*	Re
	C7H15			89-94	72	55
	anti C _s H	17	235	89-91	ca 19	56
	anti CH ₂	Ph	236	148-150		56
	C10H21		237	89.5-91.5	_	55
	syn C ₁₄ H	29.	238	100-100.5	76	55
	anti C14	I ₂₉		96-97	_	55
	P ²	\mathbf{R}^1 \mathbf{R}^2	240	212 216	50	
FY .	'	Br H	240	212-215	50	58
	ノノ	CI CI	241	283	25	58
A COL	R ²	NO ₂ H	242	228-229	96	80
240-242		-				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>n</u> m	R	-			
No d	0 1	NO ₂	243	_	_	67
		NO ₂	244		-	67
	1 2 2 2	NO ₂	245	_	·	67
$\sim 0.0$ m	22	NO ₂	246	-	_	67
	0 1	NH ₂	247	-	_	67
243-257	1 1	NH ₂	248	-	_	67
	1 2	NH ₂	249	-	_	67
	2 2	NH ₂	250		_	67
	<u> </u>	CH ₃ CO	251	150-160	85	54
	1 1	CH ₃ CH(OH)	252	WaX	76	54
	1 1	C ₆ H ₁₃ CO	253	89-91	66	55
	1 1	C ₆ H ₁₃ CH(OH)	254	WaX	_	55
	1 1	C ₉ H ₁₉ CO ⁴	255	86-92	50-48	55
	n m	R				
	1 1 0	H ₁₉ CO ⁴		7 <b>89</b> 1	_	55
	1 1	C ₉ H ₁₉ CH(OH)	256	88-91	-	55
	1 1	$C_{10}H_{21}$	257	74.5-76	44	55

Table 6. (Cond.)

*Table includes compounds obtained by further modification of benzo crown ethers obtained by direct substitution onto the aromatic ring.


^bYields are on an overall basis and are based on commercially available benzo crown ethers.

"When no isomer is specified, a syn and anti mixture is assumed.

⁴The higher melting isomer is believed to be the syn form. The yield for the syn isomer is a total value for the crude product.

## (B) o- and m-Xylyl derivatives (Table 7).

 $\alpha$ ,  $\alpha'$ -Dihalo-*m*-xylenes bearing a large number of different substituents are readily available. These, in turn, can be cyclized with polyethyleneglycols to yield analogs of the crown ethers (eqn 10). The compounds are alternatively prepared from glycol diosylates and the *a*,*a*'-dihydroxyxylenes. The



majority of the research of these classes of compounds has been carried out by three research groups: Cram *et al.* in the United States;^{73, 82–85} Vögtle, in Germany;⁸⁶ and Reinhoudt *et al.* in the Netherlands.^{87–89} McKervey, in Ireland, has also performed research in this area.⁹⁰

Several features of the system are immediately apparent. In the region of the aromatic fusion an unusually long carbon bridge exists. This has generally resulted in a lower binding constant for cations. Another characteristic of the system is the ease with which a large number of different substituents may be projected from the aromatic ring into the macrocyclic cavity. Such substituents may contain atoms capable of binding cations or may simply "crowd" the cavity. Models suggest that for complexation to occur, the aromatic ring must be tilted about 30° out of the plane of the macrocyclic ring.¹² This allows

the benzene substituent, which is projected into the cavity, to act as an additional binding site below the plane of the ether oxygens and gives the ligand a basket shape.⁸³

A substantial amount of data regarding alkali metal complexation by these ligands is available.^{82, 84, 85, 91} In addition to the *m*-xylylene derivatives, *o*-xylylene derivatives are also known. Their structure, however, precludes the ability to project a substituent into the cavity, and they have received less attention.

Ester analogs of all these ligand types are also available from the reaction of phthaloyl chloride with the polyethylene glycols. These ester compounds have recently been reviewed.¹⁹

Table 7 is a listing of ortho and meta-xylyl crown compounds.

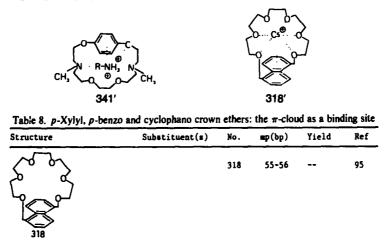
Structure	Subst	ituent(s)	No.	mp(bp)	Yield ^a	Ref
	<u></u>	• L	258		2	87,8
$\bigwedge$		2	259		16	87,8
		3	260	85-88	67	87,8
		4	261	••	49	87,8
Υ Υ		5	262	(220/.01)	18	87,8
Yoy				44-46	60	83
258-264		5	263		21	83,9
		7	264		21	83,9
	<u> </u>	<u></u>				
•	2	OH	265	<b>66-66</b> .5	41	90
		OCH3	266	oil	45	90
$\sim$		C02CH3	267	oil	34	85
		C0_H _	268	106-112	33	85
	3	ON	269	48-49	53	90
X ~ Yn		Otie	270	oil	58	90
265-281		Br	271	oil	7	83,8
		C1	272	oil	53	83,8
		CN	273	oil	10	83,8
		CH_OH	274	oil	65	83,8
		CH ₂ OHe	275	70-71	32	83,8
		CO2CH3	276	oil	82	83,8
		ເວຼີຟັ	277	100-1	81	83,8
	4	ເວັ້ດສັ	278	oil	68	83,8
		ເວັ້ມ	279	86-95	67	83,8
	7	CO_CH_	280	oil	34	83,8
		ຒຼົມີ	281	oil	33	83,8
_		_ <u>_</u> R		10.40	<i>.</i>	•
R		Br	282	45-60	62	84
$\land$		CN	283	oil	38	84
		OCH3	284	XEX	53	84
		SCH3	285	oil	19	84
		t-Buty			61	84
282-287		CO ₂ Et	287	glass	31	84
£02-£01	D R	R ²				
R	2 CH		288	oil	58	82
Ĩ	NO	, OK	289	105-6		90
$\frown$	3 СН	, OCH,	290	70-72	49	82
$\checkmark$	NO	OH S	291	91-91.5		90
R ²	4 CH	, OCH3	292	71-73	59	82

Table 7. Ortho and Meta-xylyl derivatives and related compounds

Table 7. (Co	mtd.)
--------------	-------

		Table 7. (Con	td.)			
Structure	Sube	tituent(s)	No.	mp(bp)	Yield ^a	Ref
$ \begin{array}{c}                                     $	R ¹ CH ₃ H CH ₃ B	 ОСН ₃ Н ОСН ₃ Н	293 294 295 296	148-151 88-90	14 30 26 9	82 87,90 82 87,90
247-301		R H F OCE ₃ BO ₂ SOCE ₃	297 298 299 300 301	158-160 178-179 215-216 179-180 273-274	5 3 9 36 8	86 86 86 80
R ¹ R ² 302-309	n 0 1 2 3 4 5 6		- 302 303 303a 304 305 306 307 308 309	      	3 13 48 29 63 60 25 47 36	89 89 89 89 89 89 89 89 89
		 1 2 3	310 311 312	 	17 24 8	88 88 88
310-312			313	58-58.5		92
313			314	53.5-54.5		92

Structure	Substituent(s)	No.	ap(bp)	Yield ⁴	Ref
		315	131-132	8	86
316		316	152-153	10	δο
		317	112-115	3	86
317					


Table 7. (Contd.)

^aYields are on an overall basis and are based on bis (X-CH₂) aromatic starting material.

## (C) p-Xylyl, p-Benzeno and cyclophano crown ethers: the $\pi$ cloud as a binding site (Table 8)

Several researchers have examined the possibility that fusion of the crown ether to cyclophane systems or to p-xylyl or benzene systems would turn the face of the aromatic  $\pi$  cloud into the macrocyclic cavity and result in a cation- $\pi$  cloud interaction during complexation. This affect has been verified by several groups. Kawashima *et al.* reported that the NMR chemical shifts of aromatic protons indicate that in some such systems the  $\pi$  cloud is involved in complexation and in others it is not.⁹³ Stoddart *et al.* have used the low temperature NMR technique to examine the kinetics of these interactions in complexes such as (341').⁹⁴ Sousa and Larsen have shown that the photo excited states of the cesium complex (318') are perturbed, indicating interaction of the cation with the  $\pi$ -face.⁹⁵ In addition, Cram *et al.* have obtained considerable data regarding the complexation of this ligand class with ammonium salts.⁷³

Table 8 is a listing of *p*-xylyl, *p*-benzeno and cyclophano crown ethers.



## JERALD S. BRADSHAW and PAUL E. STOTT

	Table 8. (Co	ntd.)			
Structure	Substituent(s)	No.	ap(bp)	Yield	Ref
		319	73-74	18	73,83
319	<u> </u>				
320-321	1 2	320 321	oil 94-94.5	46 25	93 93
S A A A 322	रुदु	322	133-134	23	73,83
323,324	e e	323 324	192-193 157-158	6 14	73,83 73,83
325,326	ک ک	325 326	118-119 121-122	3 25	73,83 73,83
327		327	(120-130, .01) oil	2 2.2	73,83 93
	<u>n</u> 1 2 3	328 329 330	95.5-96.5 93.5-94 67-68	7 8 7	73,83 73,83 73,83

323-330

tructure	Substitue	nt(s) No.	ep(bp)	Ÿield	Rei
~	<u> </u>				
ۍ مړ	1	331	56-56.5	2.6	93
			••	4	88
S of the second	2	332	59-60	10	93
$\mathcal{L}_{\mathcal{A}}$				35	88
331-336	3	333		16	88
	4	334		6	88
	5	335		7	88
	6	336		13	88
		337	121-122	2	86
337					
	<u>n_X</u>				
	1 0		oil	17	93
	1 S		55.5-56	51	93
X X	1 NCO ₂	C2 ^H 5 340	(220/		
$\sim_{u}$			.005)	15	94
•	1 NCH ₃	341	(175/	• •	~
338-342			.005)	14	94
	20	342	oil	17	93
×=	<u> </u>	343	36-37	2.9	93
La ma	2	344	oil	3	93
	•				
343,344					

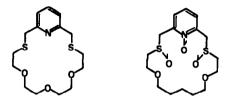
#### (D) Fusion to heterocyclic systems

Fusion of the crown to carbocyclic aromatic systems other than by 1,2 fusion results in an interruption of the normal two carbon to one heteroatom arrangement. The problem is typically avoided by replacement of the carbocyclic system by a heterocyclic one. The most common heterocycle used has been pyridine, which can be included by the reaction of dihalomethyl or dihydroxymethyl pyridine with the appropriate glycol derivative, or by direct attachment of the glycol oxygens to the aromatic nucleus by displacement of ring halogens. Alternatively, the glycols may be reacted with dicarbonyl chlorides to give the related macrocyclic ester; or  $\alpha$ ,  $\omega$ -diamino glycol ethers may be condensed with dicarboxalde-hyde, or diketone derivatives to give imine type products. Furan and thiophene derivatives are also commonly employed.

Macrocyclic compounds containing heterocyclic subunits have been reviewed,⁹⁶ and crown ester compounds, including heterocyclic subunits, have also recently been reviewed.¹⁹

## 5. ALTERNATIVE HETEROATOMS

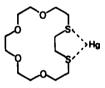
Until now we have primarily discussed modification of crown ethers by the attachment of various substituents to the macrocyclic ring or to aromatic subunits that are fused to the macrocycle. Another


obvious modification that can be made is the replacement of oxygen (or in some cases carbon) by alternative heteroatoms. An enormous amount of work has been reported in this area. Changing of even one heteroatom in the macrocycle can have a profound affect on its ability to bind cations.

#### (A) Sulfur

Even before Pedersen's all oxygen crown compounds had been reported, sulfur containing analogs of the crown ethers were known. For example, 1, 10-dithia-18-crown-6 was prepared in 1961.⁹⁷

Bradshaw et al. prepared a large number of related macrocycles of various sizes and varying numbers of sulfur atoms.⁹⁶ Shortly after publication of his work with the benzo crown compounds, Pedersen investigated the preparation of analagous sulfur containing benzo crown compounds.⁹⁹


In recent years there has been a marked decline in interest in the sulfur ligands and little new synthetic work has appeared. One exception is the work of Vögtle in the preparation of this crowns fused to heterocyclic and other aromatic systems.¹⁰⁰⁻¹⁰²



The older work has been reviewed both specifically⁹⁸ and as a part of larger reviews.^{8,9} Several macrocyclic polyether-sulfide esters have also been reported and reviewed.¹⁹

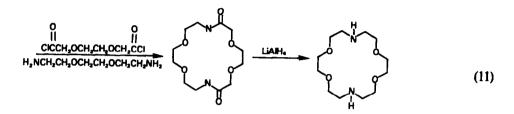
The macrocyclic sulfides and ether-sulfides are generally poor complexing agents for the alkali and alkaline earth metal cations. They do exhibit strong interactions with mercury and silver,¹⁰³ but it should be recognized that simple alkyl sulfides also form strong complexes with these metals.

The introduction of sulfur into the macrocycle generally distorts the ring and often leaves the sulfur pointed out of, rather than into, the ring.¹⁰⁴ Indeed, the complex of 1, 4-dithia-18-crown-6 with mercuric chloride leaves the metal cation outside, rather than inside, the cavity of the ligand.¹⁰⁵

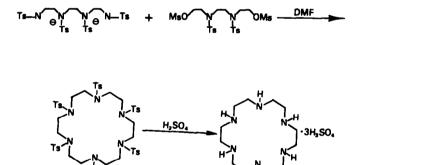


#### (B) Phosphorus

The preparation of macrocyclic phosphorous containing ligands has proven to be quite difficult. To date only a few compounds, wherein the phosphorous atoms form a true macrocyclic ligand, have been reported.¹⁰⁶ The products are usually air sensitive. Several complexes with nickel (II) and cobalt (II) salts were prepared.




#### (C) Nitrogen


The heteroatom most often substituted for oxygen is nitrogen. Nitrogen is not only an excellent electron donor, but its trivalent nature and chemical reactivity make it very useful for further reactions. Macrocyclic azapolyethers have been further functionalized to improve ligand-cation binding,¹⁰⁷ provide secondary binding sites,¹⁰⁸ change ligand-cation selectivity,¹⁰⁷ and to prepare ion-selective dyes,¹⁰⁹ biologically active compounds,¹¹⁰ bicyclic analogs¹¹⁰ and polymer bound reagents.¹¹¹ The macrocycles may be cyclized with substituents on either carbon or nitrogen or both, and may be prepared from both aliphatic and aromatic amines. Some substituents on nitrogen, such as tosyl, may be removed to generate ligands containing secondary amines, or may be removed and then replaced by other substituents.

The tremendous variety of compounds prepared by the inclusion of a nitrogen atom in the macrocycle has made this class of ligand the most studied of all the crown ether types.

1. Simple unsubstituted and N-substituted macrocyclic azapolyethers prepared by ring closure with the N-substituent(s) in place (Table 9). The earliest workers to express an interest in crown ethers containing nitrogen heteroatoms were Lehn and Pedersen. Pedersen primarily worked with compounds fused to one or more benzene rings. These compounds will be discussed in a later section (Section 5.C.4.). Lehn et al. developed a generally useful procedure for the preparation of diaza derivatives. This synthesis is based on the high dilution reaction of a diamine and a diacid chloride to form a macrocyclic diamide. The amide carbonyls were subsequently reduced to form the diaza crown compound (eqn 11).^{110,112}



Subsequently Richman and Atkins found that alkylation of the sodium salts of a bis(toluenesulfonamide) with a bis(methanesulfonate ester) was a convenient procedure to form these compounds (eqn 12).¹¹³ The latter procedure is particularly amenable to the synthesis of crown compounds where all the heteroatoms are nitrogen. Vögtle has improved the procedure and has demonstrated the viability of reductive as well as hydrolytic removal of the tosyl function.¹¹⁴⁻¹¹⁶



In the case of aromatic amines, direct alkylation with a bis(chloroethyl) ether derivative yields the aza macrocycle.^{117,118}

A novel, but little explored approach to these compounds involves ring opening of a lactone by a diamine, ring closure of the resulting dihydroxy compound and reduction of the amide carbonyls.¹¹⁹ The process has never been fully tested, however.

A final approach to the synthesis of the aza ligands is the replacement of diethylene glycol by N-alkyl diethanol amine in any of the "normal" crown ether preparations.¹²⁰

Table 9 is a listing of unsubstituted and N-substituted macrocyclic azapolyethers prepared by ring closure with the N-substituent(s) in place.

Table 9.	Simple	unsubstituted	and	N-substitued	macrocyclic	azapolyethers	prepared by	ring	closure	with	the
				N-sı	ubstituents in	place					

Structure	Substituent(s)	No.	mp(bp)	Yield	Ref
Ta		345	199-201	32	121
					114

(12)

## JERALD S. BRADSHAW and PAUL E. STOTT

Table 9. (Contd.)

Table 9. (Contd.)								
Structure	Substituest(s)	No.	mp(bp)	Yield	Ref			
		346	222-223	71	113			
Te					114			
™-N )								
346								
	<u>a</u> <u>R</u>	_						
_	1 o-HOPh	347	90		11			
$\sim \sim$	2 CR ₃	348		45	126			
) N <u>-</u> R	с ₂ й ₅	349	oil	75	12			
Kot	n-C4H9	350		58	120			
347-371	CH ₂ CH=C	H ₂ 351		48	120			
	Ph	352	44-45		109			
	p-NO2Ph	353	127		109			
	<u> </u>							
	p-NH ₂ Ph	354	46		109			
	p-CHOPh	355	80		109			
	p-SO ₃ NaPhN=NPh		136-145		109			
	p-MO ₂ PEN=NPh	357	132-134		109			
	m-NO2PhN=NPh-	358	110		109			
	p-CO2EtPhN=NPb	- 359	115	••	109			
	o-CO2NaPhH=NPh	- 360	139-149		109			
	(p-Me2NPh)2(2,							
	5,6-CI ₄ -4-							
	ОНРЬО) С-	361			109			
	3 H	362		13	122			
	<b>A1-</b>			28	14			
	CH3	363		55	120			
	CAH9	364		67 40	120			
	CH_CH=CH_	365		40	120			
	CH ₂ Ph	366		25	122			
	Ph Ph C	367 368	30-35 	43	109			
	Ph ₃ C n-MO.PhN=NPh-	369 369	 111-116	43	14 109			
	p-NO ₂ PhN=NPh- 4 H	370	0il		109			
	, p-NO ₂ PhN=NPh-	371	95-97		109			
	F				109			
$\overline{}$	᠆ᢙᢅᠣᡪ	372	145-151		103			
<u>م الا</u> کر آ	$\sqrt{\zeta}$							
	rias -							
372								
	<u> </u>							
$\sim$ 7	<u> </u>	373	125-127		109			
b ~ <u>k</u> (-)	R CI CI							
	Т.	_ = :						
_√)]3	но-{ }-о-	_ 374			109			
373,374								
	<b>R</b> ¹ <b>R</b> ²							
	<u> </u>	375	80-95		100			
	н нососоо	375 376	80-85 		109 109			
ራ <del>ኊና</del> ጉ+ና	H Ph	370	117-121		109			
	Ph 4-08-2,3,5,							
	EN 4-AG-ETTTT							
		378			109			
	6-Cl ₄ Ph- B p-Me ₂ MPh-		 oil	 	109 109			

## Macrocyclic oligomers of ethylene oxide

	Table 9. (Conid).							
Structure	Substit	uent(s)	No.	map(bp)	Yield	Ref		
-	<u> </u>	R						
r R	1	X	381	oil		121		
al a					6	118		
$\langle N^{-} \rangle$		Tosyl	382			114		
P N−R						118		
X a La	2	Tosyl	383	201-207	23	121		
381-383								
301-303								
		<u> </u>						
ron	1 1	H	384	83-84	45	110		
R-N N-R		Tosyl	385	203-204	80	11;		
Ϊ Ĺ , Ĵ Ϊ	12	Ħ	386	oil	68	110		
	22	Ħ	387	115-116	80	110		
384-390		Tosyl	388	164-165	80	113		
						114		
	1 3	CH ₃	389			120		
	33		390	15	65	110		
	<u>_a</u> _	<u>R</u>						
Ŗ	1	H	391	83-85	61	113		
$\sim$		Tosyl	392	200-204	63	121		
	2	R	393	oil	19	11		
<u> </u>		Tosyl	394	198-199	71	12		
391-395	3	Tosyl	395	196-198	14	121		
	 H H	R ¹ H Tosyl	396 397	135-136 88-89		123 123		
[ ]								
396,397	1	2						
396,397 R ² R ²	<u> </u>	<u>R²</u> H	202	66-69	64	115		
396,397	1 H	H	398 399	66-69 253-255	64 52			
396,397	l H Tosy	H l Tosyl	399	253-255	52	121		
	1 H Tosy 2 H	H l Tosyl H	399 400	253-255 oil	52 74	121 115		
396,397 R ² N N N N N R ¹ N N R ¹	1 H Tosy 2 H H	H 1 Tosyl H Tosyl	399 400 401	253-255 oil 121	52 74 	121 115 124		
396,397 R ² N 396,404	1 H Tosy 2 H H Tosy	H I Tosyl H Tosyl I Tosyl	399 400 401 402	253-255 oil 121 93-96	52 74  25	121 115 124 121		
	1 H Tosy 2 H H	H I Tosyl H Tosyl I Tosyl I Tosyl	399 400 401	253-255 oil 121	52 74 	121 115 124		
	1 H Tosy 2 H H Tosy 3 Tosy	H I Tosyl H Tosyl I Tosyl I Tosyl	399 400 401 402 403	253-255 oil 121 93-96 192-193	52 74  25 35	115 124 121 121		
	1 H Tosy 2 H H Tosy 3 Tosy 5 Tosy <u>a</u>	H I Tosyl H Tosyl I Tosyl I Tosyl I Tosyl R	399 400 401 402 403 404	253-255 oil 121 93-96 192-193	52 74  25 35 12	121 115 124 121 121 121		
	1 H Tosy 2 H H Tosy 3 Tosy 5 Tosy	H I Tosyl H Tosyl I Tosyl I Tosyl I Tosyl R R Tosyl	399 400 401 402 403 404 404	253-255 oil 121 93-96 192-193	52 74  25 35 12 80	121 115 124 121 121 121		
	1 H Tosy 2 H H Tosy 3 Tosy 5 Tosy <u>n</u> 1	H I Tosyl H Tosyl I Tosyl I Tosyl I Tosyl R Tosyl H-HCl	399 400 401 402 403 404 405 405	253-255 oil 121 93-96 192-193 192-194	52 74  25 35 12 80 72	121 115 124 121 121 121 121		
	1 H Tosy 2 H H Tosy 3 Tosy 5 Tosy <u>a</u>	H Tosyl H Tosyl Tosyl Tosyl Tosyl R Tosyl H-HCl Tosyl H-HCl Tosyl	399 400 401 402 403 404 405 406 406	253-255 oil 121 93-96 192-193 192-194	52 74  25 35 12 80 72 83	121 115 124 121 121 121 121 121 121		
	1 H Tosy 2 H H Tosy 3 Tosy 5 Tosy 1 1	H I Tosyl H Tosyl I Tosyl I Tosyl I Tosyl R Tosyl H-HCl Tosyl H-HCl	399 400 401 402 403 404 405 406 407 408	253-255 oil 121 93-96 192-193 192-194	52 74  25 35 12 80 72 83 	121 115 124 121 121 121 121 113 113 7		
	1 H Tosy 2 H H Tosy 3 Tosy 5 Tosy <u>n</u> 1	H Tosyl H Tosyl Tosyl Tosyl Tosyl R Tosyl H-HCl Tosyl H-HCl Tosyl	399 400 401 402 403 404 405 406 407 408 409	253-255 oil 121 93-96 192-193 192-194	52 74  25 35 12 80 72 83	121 115 124 121 121 121 121 121		

2. Macrocyclic azapolyethers fused to an aromatic ring at nitrogen (Table 10). o-Phenylenediamine, o-aminophenol and o-nitrophenol are all readily available raw materials that can be converted to the title compounds with relative ease. The first two can be cyclized by refluxing with bis(chloroethyl) ethers in dimethylformamide.^{117,118} The latter starting material allows stepwise reaction to yield products fused to two benzene rings.^{118,125} Both the Lehn (macrocyclic amide reduction) and Richman (toluenesulfonamide) methods have also been used successfully to prepare the fused aromatic ring systems.^{108,125}

Meth-Cohn has alkylated benzimidazolone, a phenylenediamine derivative, with various bis(chloroethyl) ethers to produce diaza crown ethers which have a urea carbonyl pointed into the cavity.¹²⁶⁻¹²⁸ The same technique is also successful with other cyclic diamides.

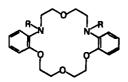

As in the case of the simple macrocyclic azapolyethers (Sect 5.V.1.), the nitrogen function may be further derivatized.

Table 10 contains a listing of macrocyclic azapolyethers fused to an aromatic ring at nitrogen.

Structure	Sub	stituent(s)	No.	mp(bp)	Yield	Ref
		R				
٩,	_ <u>_</u>	- <u>H</u>	412	80		108,1
$\gamma^{N}$	2	H	413	101.5		108,1
the of		n-C ₃ H ₇	414	oil		108
$\chi$		CH2CH2CH2OEt		oil		108
412-423		CH2CH2CH2Br		solid		108
		COCH2CH2Br	417	oil		108
		COCH2CH2CO2H	418	solid		108
	3	Ē	419	oil		108,1
		CH3SO2	420	91-92	32	125
	4	Ц	421	oil		108,1
	5	н	422	oil		108,1
	6	H	423	oil		108,1

Table 10. Macrocycli	c azapolyethers fuse	ed to an aromatic ring at nitrogen	
----------------------	----------------------	------------------------------------	--

	<u>n</u>	<u>R¹</u>	R ²				
₽₹ /	1	H	Ħ	424	92-94		117,118
$\sim$ $\sim$		H C	OCH_CH_CO_F	425	oil		108
	2	Ħ	H	426	110		108,117
<u>_/x_</u> ^		CH	H	427	oil		108
R ²	3	H	H	428			108
424-429		H	CH3SO2	429	191-192	5	125



430,431

F

<u>R</u>				
	430	203-204	20	125
CH3502	431	200-202	28	125

## Macrocyclic oligomers of ethylene oxide

Table 10. (Contd.)								
Structure	Substituent(s)	No.	mp(bp)	Yield ^a	Ref			
R R N N R N R N R N R N R N R N R N R N	R H Tosyl	432 433	182-183 glass	6 18	125			
R N N R A34,435	 H Tosyl	434 435	198-200 150-153	43 52	125 125			
		436	117	31	108			
437-439	 1 2 3	437 438 439	117-118  (95-100/ 0.05)	13.7 41 79	126,1 128 <b>126-</b> 1			
CTHONG S		440	184	7.2	126-1			
	 1 2	441 442	197-199 114	14.8 12.4	126-1 126-1			

^aYields are overall and are based on the starting aromatic amines.

3. Functionalization of the nitrogen(s) of preformed macrocyclic azapolyethers (Table 11). We have already seen that a wide variety of aza and polyaza macrocyclic polyethers may be prepared by several methods. In some cases, the nitrogen atoms are substituted before the macrocycle is formed, usually by an alkyl group or a sulfone. The sulfone and benzyl substituents can readily be removed. Thus, macrocyclic ligands containing one or more secondary nitrogen atoms are easily prepared. These secondary amines are reactive and can be further functionalized. Alkylation of the aza compound increases its cation binding,¹⁰⁷ increases its lipophilicity,²⁰ imparts biologcal activity to the macrocycle,¹¹⁰ and may be used to attach the ligand to a polymer support.¹¹¹ These amines are also reactive towards acylation and electrophilic addition as well.¹²⁹ A large number of both simple and complex derivatives have been prepared.

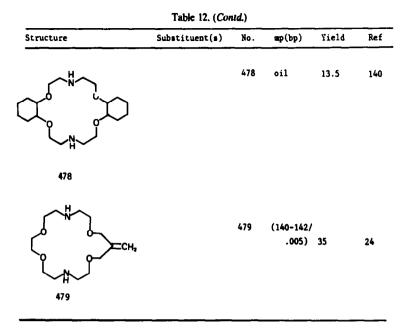
Table 11 is a listing of macrocyclic azapolyethers which have been functionalized on nitrogen.

Structure	Sut	stituent(s)	No.	aap(bp)	Yield	Re
$\sim$		1	443	(79/.02)	61	130
CHN N-C	:H ₃	2	444			13
X a In						
443,444						
Ръсн=снсну	$\frown $		445	oil	87	132
	کی	urn _a				
••	5	R_				
		CH3	446			13
		5				13
-N N-	-8	CH2C(CH3)3	447			13
		CH ₂ Ph	448	<b></b>		13
$\sim_{Q}$ $\sim$		4-MeOPh	449			13
$\smile$		n-C10 ^H 21	450			7 20
446-462		^{n-C} 16 ^H 33 n-C ₁₅ H ₃₁ CO	451 452	90-92 43-44	90 95	20
		CH2002Bt	453		65	108
		CH2CH2CN	454	49		134
				oil	••	13
		CH2CH2CO2H	455	128.5-130		135
		CH2CH2CH2NH2				134
		Ph ₂ CH CO ₂ Et	457 458	109-109.5 89	86	132 132
		PhCH=CHCO	430 459	148-150	ao 72	132
		PhCH2CH2CO	460	76-79	94	132
		p-NO ₂ PhSO ₂	461	197-199	86	132
	$\sim$					
		$\Gamma$	462	165-166	45	132

Table 11. Functionalization of the nitrogen (s) of preformed macrocyclic azapolyethers

Structure	Substituent(s)	No.	∎p(bp)	Yield	Ref
~	_ <u></u>	-			
~~ ~ ~~	p-NH2PhCO2CH2CH2	463	oil	60	132
$\langle \rangle$	p-NO2PhCO2CH2CH2	464	118-120	24	132
- <u>N</u> N-++	p-CO ₂ HPhCO	465	170-173	65	132
$\langle \rangle$	РЬ2СН	466	88-89	22	132
∕_و و_∕	-				
$\smile$					
463-466					

Table 11. (Contd.)


4. Macrocyclic azapolyethers substituted on carbon (Table 12). Many of the methods already discussed have been applied to cyclization reactions of glycols branched at carbon and their derivatives, or similar dihalo compounds. Substitution on carbon has generally been used is a method to change the solubility characteristics of the ligand.²⁰ Substituted diazamacrocycles may also be used as intermediates for the preparation of substituted cryptands (Section 5.D.).^{136,137}

Macrocyclic azapolyethers substituted on carbon are listed in Table 12.

Table 12. Macrocyclic azapolyethers substituted on carbon (including attachment by fusion to another ring)

Structure	Substi	tuent(s)	No.	aap(bp)	Yield	Ref
	n	R				
~ thoya	0	Ħ	467	39-40	18	125
Γ γ γ R		Tosyl	468	174-175	35	125
$\sim 2$	1	Ħ	469	142-143	1.8	125
4		Tosyl	470	136-137	36	125
467-470						
			471			138
	l uHza		472	38-39	60	20
472	<u> </u>	<u> </u>	473	150-152	12	125
$\sim \circ$	<b>•</b> 1 -	_				129
$\checkmark$	TaN	0	474	158-160	34	125
- 0	EN	EDN	475	175-177	4.5	125
$\checkmark$	Tan	TaN	476	215-216	10	125
	PhC	I2N PhCH2	N 477			139

473-477



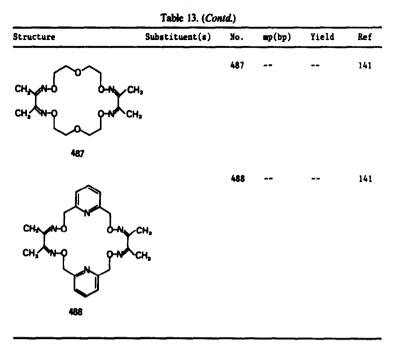

5. Nitrogen in place of carbon (Table 13). Generally nitrogen has been put into the macrocycle as an alternative to oxygen, however, two types of macrocyclic ligands have been reported in which the nitrogen is used as an alternative to one or more carbon atoms. The result is a nitrogen-oxygen bond. The first approach to this class of ligands is the cyclization of salicylaldehyde oxime or diacetyl dioxime by the usual methods.¹⁴¹ However, the resulting macrocyclic mono- and dioximes show little tendancy to bind alkali metal cations. The second type of ligand, which is a macrocyclic polyhydroxamate, is prepared by oligomerization of nitrile N-oxides. They are reported to bind cations but are thermally unstable and can decompose violently.^{142,143}

Table 13 lists macrocyclic polyether compounds with nitrogen in place of carbon.

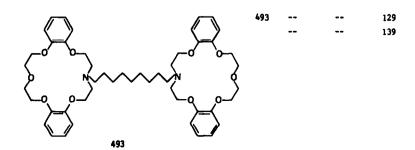
Structure	Substituent(s)	No.	anp(bp)	Yield	Ref
	_ <u>n</u>				
ÇН ₃	1	480	320	••	142,14
N CH,	2	481	174-176	6	142,14
	3	482	171		142,14
№ р сн,					
CH, CH,					
CH ₃ 480-482					
$\frown$		483			141
No of					
( a a					
483	1				
CH NHO OL	0	484			141
	1	485			141
CH3 N-Q OT	2	486			141
484-486					

Table 13. Nitrogen in place of carbon

Macrocyclic oligomers of ethylene oxide



6. *Miscellaneous* (Table 14). A handful of macrocyclic azapolyethers do not fall neatly into any category discussed above and are listed in Table 14.


Table 14. Miscellaneous macrocyclic azapolyethers

Structure	Substituent(s)	No.	aap(bp)	Yield	Ref
	<u> </u>				
a th	1	489	240	78	144
	2	490	290-296	24	144
	3	491	190-200	39	144

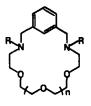


492 92-94 0.2 126





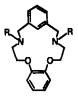
## JERALD S. BRADSHAW and PAUL E. STOTT


		(A . I)	
ahle	14.	(Contd.)	

$ \begin{array}{c}                                     $	Table 14. (Contd.)						
$\begin{array}{c} R \\ R \\ R \\ R \\ R \\ R \\ 340,341 \\ \hline R \\ R \\ \hline R$	Structure	Substituent(s)	*	mp(bp)	Yield	Re	
$\begin{array}{c} CH_{3} \\ CH_{3} \\ 341 \\ (200/ \\ .005) 20 \\ 94 \\ 340,341 \\ \hline R \\ 340,341 \\ \hline R \\ 494 \\ \\ \\ 140 \\ \\ 140 \\ \\ 140 \\ \\ 140 \\ \\ \\ 140 \\ \\ \\ 140 \\ \\ \\ 140 \\ \\ \\ \\ 140 \\ \\ \\ \\ \\ \\ \\ \\ $		R					
$\begin{array}{c} 0.005) 20 \\ 94 \\ R \\ 340,341 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		CO ₂ Et			72	94	
$\begin{array}{c} 0.005) 20 \\ 94 \\ R \\ 340,341 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\wedge$	CH ₃	341	(200/			
$\frac{1}{1000}$	$\sim$			.005)	20	94	
$\frac{1}{1000}$							
$\frac{1}{1000}$							
	R						
	340.341						
	·	P					
	$\sim$	<b>→</b> <u>"</u>	494			145	
	<b>√ ≻</b> ₆ -√	, CO ₂ CH ₂ Ph	495			145	
	/ \ 4	ىم					
$\mathcal{F}$	う ご ご	<u>¬</u> _					

494,495

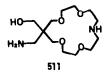
'nΗ,


CH;





<u> </u>	<u> </u>				
-1	CO ₂ Et	496		ca 40	146
-1	CIL	497	oil	••	146
0	B	498			147
0	CO ₂ Et	499		ca 40	146
0	CH_3	500	oil	••	146
0	CO2CH2Ph	501			147
0	CH2CH2OH	502			147
0	CH_COMe_	503			147
0	CH ₂ (2- pyridyl)	504			147
1	∞ ₂ Et	505		ca 40	146
1	CH_3	506	oil		146


.

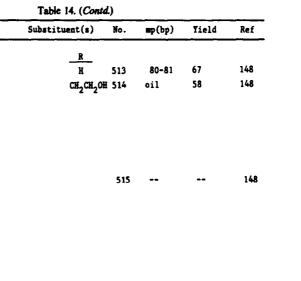


<u> </u>			
H	507		 147
∞ ₂ CH ₂ Ph	508	••	 147
CH_CH_OH	509		 147
CH2COMie2	510		 147
CH2COMMe2	510	~~	 147

511

507-510

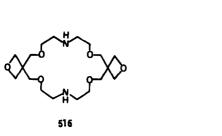





512	 	148

35

148


52-56

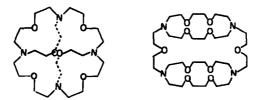


516

118.5-119 17

148




Structure

513,514

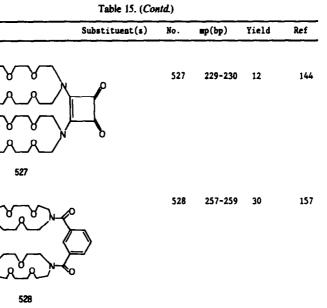
(D) Cryptands (bi- and tricyclic polyazapolyethers): a special case of funcationalization on nitrogen Macrocyclic polyethers containing two or more secondary nitrogen atoms in the macroring may be alkylated with a dihalide compound¹²⁹ or acylated with a diacid chloride^{110, 113, 144} to yield bicyclic ligands. The latter method is by far the most common procedure to make these bi- and tricyclic ligands. The macrobicyclic compounds are generally referred to as cryptands (the name originally proposed by Lehn), but have also been referred to as "lanterns" (the name originally proposed by Pedersen).

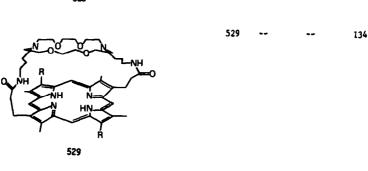
Three properties of the cryptands are particularly important; (1) binding constants for most cations are several orders of magnitude greater than with 18-crown-6 or other monocyclic ligands,⁹ (2) the anion is completely separated from the cation,¹⁰⁸ and (3) decomplexation is extremely slow. Decomplexation may be made rapid however, by adding acid which protonates the tertiary nitrogen atoms.¹¹⁰

Tricyclic compounds can also be prepared if the appropriate starting materials and conditions are used.^{123, 150-153}



Because the cryptands have been known since 1969 and have proven to be both interesting and useful, they have been included in several reviews.^{8,9,154} Therefore, Table 15 includes only cryptands that have not appeared in previous reviews. Nearly all have been prepared by the standard methods described in earlier literature. Substituted derivatives are generally prepared from substituted diacid chlorides, but sometimes from the substituted diaza crown ethers discussed earlier (Section 5.C.2,3 and 4). The substituents have generally been added to change solubility characteristics^{136,137} or allow attachment to polymer supports.²²


## JERALD S. BRADSHAW and PAUL E. STOTT


Table 15. Cryptands: macrocyclic bi-and tricyloazapolyethers

Structure	Substituent(s)	No. mp(bp)		Yield	Ref	
		517		••	22	
		518			129	
518		519	oil	9	14	
520-521	<u> </u>	520 521	10 <del>6</del> 104-105	40 36	15 15	
522,523	₽= ¥2 ₽= 0	522 523	 264-266	25	15 15	
F + + + F 524,525	R≠ B ₂ R= 0	524 525			15	
біснайо	B#2-6	526 a-f			1	

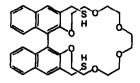


#### Macrocyclic oligomers of ethylene oxide

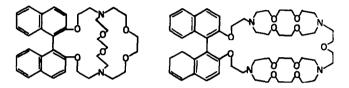




#### 6. CHIRAL CROWN ETHERS


Crown ethers which are chiral have been prepared by a number of different methods, often utilizing chiral natural products. When the chiral centers are close to, or are part of, the macrocyclic ring, selective binding of chiral substrates is possible. Thus chiral crown compounds can be used as stereo selective catalysts, enzyme models and for optical resolution of racemic substrates. Each of the several approaches to the synthesis of these types of compounds will be discussed separately.

#### (A) Chiral crown ethers derived from binaphthyl substrates


Structure

Because rotation about the single carbon-carbon bond of 2, 2'-dihydroxy-1, 1-binapthyl is hindered, it can be resolved into its (R) and (S) isomers. These may be cyclized with polyethylene glycol disulfonate esters to yield chiral macrocycles. Inclusion of one, two or three chiral binaphthyl subunits is thus possible.¹³⁸⁻¹⁶⁰ An alternative approach is to resolve the macrocycle derived from the racemic binaphthyl diol by complexation to (S)-valine.¹⁶¹ Such ligands may also be prepared with additional fusions to heterocyclic subunits¹⁶² or with a large variety of substituents at the 3 and 3'-positions of the binaphthyl moeity.¹⁶³

Selectivity ratios for the binding of these ligands to optical isomers in a racemic mixture of organic ammonium salts can be as high as eighteen.^{158,164} This selective binding has been utilized in the total optical resolution of chiral ammonium salts.^{165,166} If a 3, 3'-bis(mercaptomethyl) group is present, the chiral crown may behave as an enzyme. For example, the (S) isomer of the ligand hydrolyzes p-nitrophenyl-L-phenylalanine eight times faster than the corresponding (R) ligand. The reverse is true of the D-amino acid. Similar results are observed with other bulky amino acids, but no affect is observed with alanine itself.¹⁶⁷



Bicyclic and tricyclic cryptand type compounds containing the binaphthyl moiety have also been prepared.^{168,169} The tricyclic compound provides a particular advantage in that the lateral cavities may first bind an alkali metal cation. The anion may then be subsequently bound inside the central cavity. This allows selective binding of chiral anions as well as cations. The alkali metal employed may have a dramatic affect on this selective binding.¹⁶⁹



With the exception of Lehn's work on the bi- and tri-cyclic systems, vitrually all work an the binaphthyl system has been performed by Cram *et al.* Three recent articles by them constitute a very thorough review of the subject.¹⁷⁰⁻¹⁷²

#### (B) Chiral crown ethers derived from tartaric acid (Table 16)

Tartaric acid has proven to be an ideal candidate for preparing chiral crown compounds. Both (+) and (-) isomers are readily available and the resulting crown ethers contain versatile functional groups. They can be prepared with either one or two tartrate moieties in the macrocycle, ¹⁷³⁻¹⁷⁷ and may also be fused to heterocyclic subunits.¹⁷³

Primary interest in these ligands has been as enzyme models. A large number of different amino and mercapto containing side chains have been included in both the mono- and ditartrate ligands. Selective hydrolysis of the *p*-nitrophenyl esters of a large number of amino acids and dipeptides has been studied, and a high degree of selectivity is observed.¹⁷⁸ The specific selectivity varies greatly depending on the length of the side arm.¹⁷⁵

Table 16 condains a list of the chiral macrocyclic polyethers derived from tartaric acid.

Structure	Substituent(s)	No.	[a]D	mp(bp)	Yield	Ref
CH ₂ OCH ₂ Ph O CH ₂ OCH ₂ Ph		530	+19.3	40	<<1	174
530						
$\sim\sim$	R					
	CH20CH2Ph	531	+5.0	oil	7.5	177
						175
O O R	сн ₂ он	532				177
ĬoĬ						175
$\sim$	CH2OCOCH3	533	-9.6		4.6	. 177
	CH ₂ OTs	534				175
531-546	CH2SCOPh	535				175
	CH2SH	536	-10.8			175
	CH2OCH2CH2OCH2Ph	537				175
	СН_ОСН_СН_ОН	538				175
	СН2ОСН2СН2ОТА	539				175
	CH2OCH2CH2SCOPh	540				175
	CH2OCH2CH2SH	541	+2.9			175

Table 16. Chiral macrocyclic polyethers derived from tarta	<b>fable</b>	<ol><li>Chiral macrocyclic poly</li></ol>	ethers derived from	tartaric
------------------------------------------------------------	--------------	-------------------------------------------	---------------------	----------

Table 16.	(Contd.)	)			
Substituent(s)	No.	[a] _D	mp(bp)	Yield	Ref
					175
					175
	544	*-			175
	545	*-			175
сн ₂ сн ₂ сн ₂ sн	546	-26.9	*=	* -	175
<u> </u>					
					173,1
					174
					174
				**	174
					174
					176,1
		••	180		176,1
	e)				
ĊO ₂ Me L-CONHÇH-(3-indol	554 e)	••	135-138		176
CO_NHe_	555	•-			176
	556		188		176
CONHCH2CO2NMet	557				176
(4-imidazole)	558				176
Ć0 ₂ He	559	+41	204-205		176,1
		<i></i>			
CH ₂ CU ₂ ne		-44.5	139-140		178
CONHCH, CH, N	1				179
Ċ	ONCHACH	2СН СН,			
CONNCH. CH. NHCO. CH. Ph	562		214-215	70	179
	563				179
	564		••		179
CONHCH ² CH ²	1				
Ì	CONHCH,	СН,СН,СН,			
LOCH Ph	565	+17	oil	7.7	177
H ₂ OCH ₂ Ph					
	566	+107	224	15	173
	Substituent(s) CH2CH2CH2CH2OH CH2CH2CH2OH CH2CH2CH2OT CH2CH2CH2SOPh CH2CH2CH2SSH CH2CH2CH2SSH CH2CH2CH2SH CH2CCH3 CH2CH2Ph CH2CCH3 CO2H COCI L-CONHCH-(3-indol CO2NHC4 CONHCH2CO2NHe2 CONHCH2CO2NHe2 CONHCH2CH3 (4-imidazole) L-CONHCH2CH2SH CO2H CONHCH2CH2SH CO2H CONHCH2CH2SH CONHCH2CH2SH CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2CH2NH2 CONHCH2NH2 CONHCH2CH2NH2 CONHCH2NH2 CONHCH2NH2 CONHCH2NH2 CONHCH2NH2 CONHCH2NH2 CONHCH2NH2 CONHCH2NH2 CONHCH2NH2 CONHCH2NH2 CONHCH2NH2 CONHCH2NH2 CONHCH2NH2 CONHCH2NH2 CONHCH2NH2 CONHCH2NH2 CONHCH2NH2 CONHCH2NH2 CONH2NH2 CONH2NH2 CONH2NH2 CONH2NH2 CONH2NH2 CONH2NH2 CONH2NH2 CONH2NH2	Substituent(s)         No.           CH2CH2CH2CH2Pb         542           CH2CH2CH2CH2Pb         543           CH2CH2CH2CH2CD         543           CH2CH2CH2CH2SH         544           CH2CH2CH2CH2SH         544           CH2CH2CH2CH2SH         546           R         6           CONMe2         547           CH2CH2CH2SH         546           R         6           CONMe2         547           CH2OH         548           CH2OCH2Ph         549           CH2COCH3         550           CH2COCH3         551           CO2H         553           L-CONHCH-(3-indole)         60           CO2NHCH-(3-indole)         60           CO2NHCH-(3-indole)         60           CO2NHCH2CO2NHe1         557           CONHCH2CO2NHe1         557           CONHCH2CO2NHe1         558           L-CONHCH2CH2NHe1         558           L-CONHCH2CH2NHe1         560           CO2NHCH2CH2NH         561           CONHCH4, CH1         A           CONHCH2CH2NH2         563           CONHCH2CH2NH2         563           CONHCH2CH2NH	CH_CH_CH_CH_CH_Fh 542 CH_CH_CH_CH_OH 543 CH_CH_CH_CH_OH 543 CH_CH_CH_CH_SCOPh 545 CH_CH_CH_SCOPh 545 CH_CH_CH_SCH_SH 546 -26.9	Substituent(s)         No.         [a] _D mp(bp)           CB_CH_2CH_2OEB_PB         542             CH_2CH_2CH_2OEB         543             CH_2CH_2CH_2OFB         544             CH_2CH_2CH_2CH_SEH         546        26.9            CH_COMPRE_         547         +108.0            CH_CCH_2CH_2CH_SH         546        26.9            CH_COMPRE_         547         +108.0            CH_CCH_2CH_2CH_SH         546        26.9            CH_COCH_2CH_SH         548          oil           CH_COCH_2FPh         549         +5.8            CH_COCH_2FPh         549         +5.8            CH_COCH_2FPh         552             CONHCH_CO_CH_3         551             CONHCH_CO_TAME         555             CONHCH_CH_CH_CH_SH         CONHCH_CH_CH_SH         CONHCH_CH_CH_CH_SH         CONHCH_CH_CH_CH_CH_CH_CH_CH_CH_CH_CH_CH_CH_	Substituent(s)         No.         [a] _D mp(bp)         Yield           CH_2CH_2CH_2OEL_2Pb         542              CH_2CH_2CH_2OEL_2Fb         543              CH_2CH_2CH_2OTs         544              CH_2CH_2CH_2CD_2CPD         545              CH_2CH_2CH_2CD_2SH         546         -26.9             CH_2CH_2CH_2CH_3SH         540              CH_2COCH_3         551               CONHCH=-(3-indole)                 CONHCH_2CH_2CH_2CH_2SH         555            <

(C) Chiral crown ethers derived from carbohydrates (Table 17)

Carbohydrates are another convenient source of natural chirality. A substantial number of chiral ligands have been prepared from *D*-manitol, *D*-glucose, *D*-galactose and combinations of these compounds. The carbohydrate is normally protected to yield a diol which is cyclized in the usual manner by reacting with a ditosyl ester of the polyethylene glycols,^{174,180} however, one report of a novel closure by addition of a hydroxy function across the double bond of a vinyl ether has also appeared.¹⁸¹

Because carbohydrates often contain several chiral centers the choice of available compounds is limited to those of C2 symmetry if more than one carbohydrate unit is to be included in the ring. Otherwise a large number of diasteriomers can result.

Carbohydrate based chiral ligands have not exhibited a high degree of chiral recognition. A list of chiral macrocyclic compounds derived from carbohydrates is shown in Table 17.

Structure	Substituent(s)	No.	[α] _D	mp(bp)	Yield	Ref
HO HO	одсн, Ссн, Ссн, Ссн,	567		oil	3.6	174
Ray O		568	+7.6	oil	7.4	174
R ^{ar} Co	от чи снусн Он	569	+24.5	69-71	6.7	174
568-572		570	+48.4		6.4	174
		571	+4.7		3.8	174
	CO20COCH3	572	+20.2		1.9	174
		573		oil	3.1	174
R	A R R					
		574 575	+37.6 +69.4	52-56 44-46		180 180

Table 17. Chiral macrocyclic polyethers derived from carbohydrat	tes
------------------------------------------------------------------	-----

	Table 17.	(Contd.)				
Structure	Substituent(s)	No.	[α] _D	∎p(bp)	Yield	Ref
CH ₂ O H H Ph 576,577			+102.9 +90	115 60-80		180 180
OR OR	OCH ₃ COCH ₃ COCH ₃ COCH ₃ COCH ₃	578 579				181 181
578 579		580 581				181 181

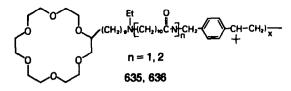
# (D) Chiral crown ethers derived from miscellaneous sources (Table 18)

n 584

The classes of chiral ligands discussed thus far are the most common. Chiral ligands, however, may also be prepared from a great many other chiral starting materials, including glycercol derivatives,³³ optically active propylene glycol,⁴⁸ optically active cyclohexanediols¹⁸² and L-proline and D-ephedrine¹⁸³ (see Table 18).

Structure	Substituent(s)	No.	[a] _D	mp(bp)	Yield	Ref
	1 0	582	+36.5	oil	23	182
562,583		583	+25.1	oil	20	182
~~	$\overline{}$	584	+39.2	77 <b>-80</b>	12	182

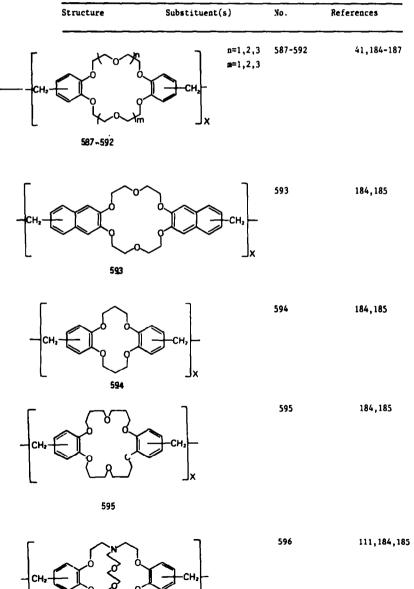
#### JERALD S. BRADSHAW and PAUL E. STOTT

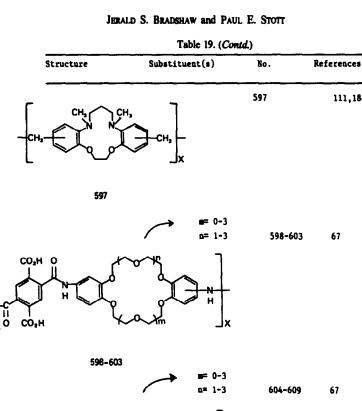

	Table 18. (Contr	<i>i.</i> )		
Structure	Substituent(s)	No. ap(bp)	Yield	Ref
CH.	83 -	43		48
83	<u> </u>	.0 	1.5 1.5	33 33
	585	98-99		183
585 CH _s CH _s N Ph CH _s CH _s CH _s CH _s	586	94-95	20	183

### 7. POLYMER-BOUND MACROCYCLIC POLYETHERS (TABLES 19 AND 20)

For several reasons it has been desirable to either attach crown ether compounds to polymers or to form polymers from crown ethers. The earliest efforts to bind macrocyclic polyether ligands to polymers utilized the reaction of the polyoxyaromatic compounds with formaldehyde.⁴¹ Subsequently, several others have prepared similar formaldehyde polymers from a variety of benzo crown compounds.^{184–187} These polymers involve the crown as an integral part of the polymer backbone. They have proven very effective in ion chromatography applications.¹⁸⁴ Mixed polymerization of monobenzo crowns with formaldehyde and some other reactive aromatic compound (i.e. phenol, toluene, resorcinol, etc.) provides some separation between the macrocycle and the polymer backbone.¹⁸⁴

Vinyl benzo crown ethers and spiro oxetane crown compounds have also been polymerized,^{26, 62, 66} but the monomer crown compounds are far more difficult to prepare.


Chloromethylated polystyrene can be used to alkylate a benzo crown compound or may be reacted with hydroxy or aza-crown compounds. Again only a short separation of the macrocycle from the backbone is obtained. All the polymer and polymer bound crown compounds mentioned thus far have been used almost exclusively in ion chromatography. In order to have efficient polymer bound phase transfer catalysts the macrocycle needs to be separated from the backbone.¹⁸⁸ This has been accomplished but only via a rather cumbersome multi-step process based on chloromethylated polystyrene and 2(9-aminononyl)-18-crown-6.^{22,188} Such polymers do appear to be useful as phase transfer catalysts.



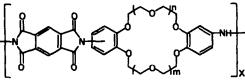
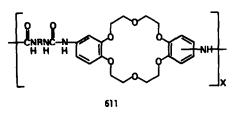
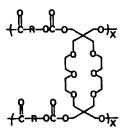


In addition to their use as phase transfer catalysts and in ion chromatography, polymer crown compounds have been used in reverse osmosis membranes. Dibenzo crown ethers are nitrated and reduced to the diamino benzo crown compounds. The diamines may be reacted with any diacid chloride or anhydride to yield polyimides, polyamides, polyamide ester, etc. which can be formed into membranes that allow the passage of water but only a slow migration of sodium and potassium ions.⁶⁷

Table 19 lists polymers which have crown ethers as part of the polymer backbone. Table 20 lists polymers which have crown ether compounds as attachments.








604-609









111,184,185

## Macrocyclic oligomers of ethylene oxide

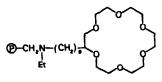
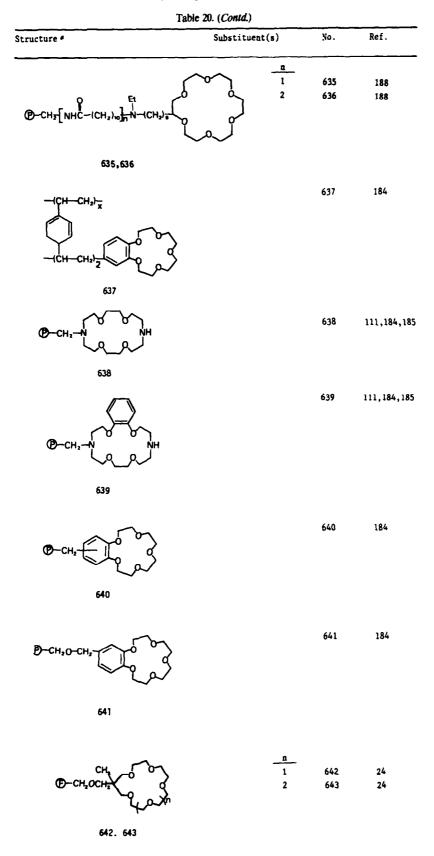

Structure	Substituent(s)	No.	Ref.
		613	26
613			
		614	26
		615	111,184,185
		616	111,184,185
616			

Table 20. Polymers bearing	marocyclic pol	yether substituents
----------------------------	----------------	---------------------


	5	ubstituent	.(3)	No.	Ref.
$\sim$	n	R ^I	R ²		
	0	H	01	617	184,185
	70	CH3	H	618	184
	<u>ہ</u> ک	ОН	OE	619	184
R'LA' Las	0	CH3	CH.3	620	184
	1	ΗJ	OH	621	184,185
617-624	1	CH	Ħ	622	184
017-024	1	OH	OH	623	184
R	1	CH3	CH ₃	624	184
$P = (CH_{3} + D)n$			•		
r - (cn ₃ - 7					

Structure"	Table 20. (Contd.) Substituent(s)			Ref.
			625	184,185
₩ ₩ ₩ ₩			626	111,184,185
CH ² CH ¹ X		<u>n</u> 0 1	627 628	62,66 62,66
	27,628	<u>R</u> H CH ₃	629 630	66 66
629,63 ()- CH2OCH2-		0	631 632	7 7
631,6 (С-сн,NH(сн			633	22

634 22,188



## Macrocyclic oligomers of ethylene oxide

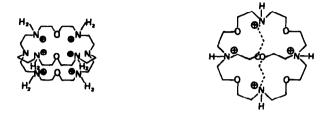


### 8. MISCELLANEOUS SYSTEMS

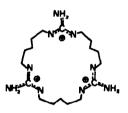
## (A) Novel ring closures (Table 21)

Since Pedersen's first report of crown ether compounds, workers have tried closing diols with a variety of reactive, bifunctional reagents (generally acid halides). The results have not produced any useful products to date. Table 21 lists some these compounds.

Structure	Substituent(s)	No.	Ref.
~~~	X		
	CO SO	644 645	35 35
	9(0)СН ₃	646	190
So xold	Sille ₂	647	191
644-647	-		
CH, CH, CH,		648	190
648			


(B) Carbonyl oxygens in the macrocycle (Table 22)

Cram has recently prepared a series of macrocyclic polyether- β -diketones which are reported to have high binding constants for a variety of metal cations.^{192,193} The diaza macrocycles of Meth-Cohn and coworkers could be viewed as related compounds¹²⁶⁻¹²⁸ (see Section 5.C.).


Table 22. Carbonyls in the macrocycle			
Structure	Substituent(s)	No.	Ref.
é e e e e		649	192
	 1 2	650 651	192 192
		652	193
652			

(C) Anion complexing agents

Until now, only cation complexation has been discussed. Polyaza crown compounds, however, can be protonated and, if large enough, they then can complex with anions. Both bicyclic and tricyclic¹⁹⁵ anion complexors have been studied.

More recently, a macrocyclic guanidinium compound has been prepared and studied as an anion complexor.196

(D) Acyclic polyethylene glycol derivatives

Initial comparisons between various oligoethylene glycol dimethyl ethers (glymes) and various crown compounds indicated that the macrocyclic compounds bind sodium, potassium and alkylammonium cations several orders of magnitude more strongly than the open chain analogues.^{197,198} Although more recent work with the glymes has continued to show that the macrocycles are stronger cation complexors. it has now been demonstrated that larger glymes do have significant binding constants for alkali metal cations¹⁹⁹ and diazonium salts²⁰⁰ than the smaller glymes studied earlier. These, as well as polyethylene glycols capped with phenolic or nitrogen heterocycle moieties, have been shown to form stable complexes with a variety of cations.²⁰¹⁻²⁰⁵ In addition, they have been shown to operate effectively as phase transfer catalysts,²⁰⁶ and in the transport of cations through lipid membranes.²⁰⁷ Indeed, even the simple polyethylene glycols (Carbowaxes) have been shown to form complexes with alkali metals,²⁰⁸ extract cations into organic solvents,²⁰⁹ and to behave in a manner similar to the macrocyclic crown ethers when employed as phase transfer catalysts.^{32,55,210-215}

Simon et al. have also shown that acyclic ligands that are very specific for the binding of certain cations can be prepared.215-218

Acknowledgements-The authors wish to thank their collegues, Professors R. M. Izatt and J. J. Christensen, Dr. G. E. Maas, Mr. S. L. Baxter and Mr. S. T. Jolley as well as Dr. W. W. Parish and Dr. M. Mangum at Parish Chemical Company for their many helpful discussions of this review. Financial support of this work by the National Science Foundation (CHE76-10991) is also gratefully acknowledged.

REFERENCES

- ¹L. H. Cretcher and W. H. Pittenger, J. Am. Chem. Soc. 47, 163 (1925).
- ²D. G. Stewart, D. Y. Waddan and E. T. Borrows, British Pat. 785, 229 (23 Oct. 1957).
- ³C. J. Pedersen, J. Am. Chem. Soc. 87, 7017 (1967).
- 4W. P. Weber and G. W. Gokel, Phase Transfer Catalysis in Organic Synthesis. Springer-Verlag, Berlin Heidelberg (1977).
- ⁵Compendium of Phase Transfer Reactions and Ion-Pair Extractions. Fluka, Buchs (Switzerland) 1978.
- ⁶G. W. Gokel and H. D. Durst, Synthesis 168 (1976).
- ⁷Crypts, Crabs, Crowns and Other Macrocyclic Ligands. Parish Chemical Co., Provo, Utah (1977).
- ²J. S. Bradshaw, In Synthetic Multidentate Macrocyclic Compounds (Edited by R. M. Izatt and J. J. Cristensen). Academic Press, New York (1978).
- ⁹J. J. Christensen, D. J. Eatough and R. M. Izatt, Chem. Rev. 74, 351 (1974).
- ¹⁰G. W. Gokel, D. J. Cram, C. L. Liotta, H. P. Harris and F. L. Cook, J. Org. Chem. 39, 2445 (1974).
 ¹¹C. L. Liotta, U.S. Pat. 3,997,562 (14 Dec. 1976).
- ¹²F. L. Cook, T. C. Caruso, M. P. Byrne, C. W. Bowers, D. H. Speck and C. L. Liotta, Tetrahedron Letters 4029 (1974).
- ¹³G. Johns, C. J. Ransom and C. B. Reese, Synthesis 515 (1976).
- ¹⁴R. N. Greene, Tetrahedron Letters 1793 (1972).

- ¹⁵K. Ping-Lin, M. Miki and M. Okahara, J. Chem. Soc., Chem. Commun. 504 (1978).
- ¹⁶J. Dale and K. Daasvatn, Ibid. 295 (1976).
- ¹⁷J. Dale and K. Daasvatn, U.S. Pat. 3, 997, 563 (14, Dec. 1976).
- ¹⁴J. Dale, G. Borgen and K. Daasvatn, Acta. Chem. Scand. B 28, 378 (1974).
- ¹⁹J. S. Bradshaw, G. E. Maas, R. M. Izatt and J. J. Christensen, Chem. Rev. 79, 37 (1979).
- ²⁰M. Cinquini and P. Tundo, Synthesis 516 (1976).
- ²¹M. Okahara, M. Miki, S. Yanagida, I. Ikeda and K. Matsushina, Ibid. 854 (1977).
- ²²M. Cinquini, S. Colonna, H. Molinari and F. Montanari, J. Chem. Soc., Chem. Commun. 394 (1976).
- ²³M. Tada and H. Hirano, Tetrahedron Letters 5111 (1978).
- ²⁴M. Tomoi, O. Abe, M. Ikeda, K. Kihara and H. Kakiuchi, *Ibid.* 3031 (1978).
- ²⁵J. Cooper and P. H. Plesch, J. Chem. Soc., Chem. Commun. 1017 (1974).
- ²⁶C. G. Krespan, U.S. Pat. 3, 952, 015 (29 April 1976).
- ²⁷C. G. Krespan, J. Org. Chem. 39, 2351 (1974).
- ²⁸A. C. Coxon and J. F. Stoddart, J. Chem. Soc., Chem. Commun. 537 (1974).
- ²⁹A. C. Coxon and J. F. Stoddart, J. Chem. Soc., Perkin I 767 (1977).
- ³⁰J. P. Desvergne and H. Bouas-Laurent, J. Chem. Soc., Chem. Commun. 403 (1978).
- 31V. S. Shaikhrazieva, E. V. Tolvinskii and G. A. Toletikov, Zh. Org. Chem. 14, 1522 (1978); [Index Chemicis 70, 275392 (1978)].
- ³²R. A. Bartsch, Personal communication.
- ³³B. J. Gregory, A. H. Haines and P. Karntiang, J. Chem. Soc., Chem. Commun. 918 (1977).
- ³⁴D. G. Parson, J. Chem. Soc., Perkin I 451, (1978).
- ³⁵C. J. Pedersen, U.S. Pat. 3, 987, 061 (15 Feb 1974).
- 36V. Gold and C. M. Sghibartz, J. Chem. Soc., Chem. Commun. 507 (1978).
- ³⁷Y. Yamashita and Y. Kawakami, ACS Symposium Series 59, 99 (1977).
- ³⁸K. Albrecht, D. Fleischer, C. Rentsch, H. Yamaguchi and R. C. Schulz, Makromol. Chem. 178, 3191 (1977).
- ³⁹C. Rentsch and R. C. Schulz, *Ibid.* 178, 2535 (1977).
- 40C. J. Pedersen, J. Am. Chem. Soc. 92, 391 (1970).
- 41C. J. Pedersen, U.S. Pat. 3, 687, 978 (Aug 29, 1972).
- 42K. Madan and D. J. Cram, J. Chem. Soc., Chem. Commun. 427 (1975).
- 43E. P. Kyba, R. C. Helgeson, K. Madan, G. W. Gokel, T. L. Tarnowski, S. S. Moore and D. J. Cram, J. Am. Chem. Soc. 99, 2564 (1977).
- 44D. E. Kime and J. K. Norymberski, J. Chem. Soc., Perkin 1 1048 (1977).
- ⁴⁵J. F. Stoddart and C. M. Wheatley, J. Chem. Soc., Chem. Commun. 390 (1974).
- ⁴⁶I. J. Burden, A. C. Coxon, J. F. Stoddart and C. M. Wheatley, J. Chem. Soc., Perkin I 220 (1977).
- ⁴⁷D. G. Parsons, *Ibid.* 245 (1975).
- ⁴⁸M. P. Mack, R. R. Hendrixson, R. A. Palmer and R. G. Ghirardelli, J. Am. Chem. Soc. 98, 7830 (1976).
- ⁴⁹R. Ungaro, B. ElHaj and J. Smid, Ibid. 98, 5198 (1976).
- ⁵⁰K. Kikukawa, K. Nagira and T. Matsuda, Bull. Chem. Soc. Jpn. 50, 2207 (1977).
- ⁵¹V. A. Popova, I. V. Podgornaya, I. Ya. Pastovskii and N. N. Frolova, Khim-Farm. Zh. 10, 66 (1976); [Chem. Abstr. 85, 192692b (1976)].
- 52J. C. Kauer, U.S. Pat. 3, 997, 565 (14 Dec 1976).
- 53J. C. Kauer, U.S. Pat. 4, 024, 158 (17 May 1977).
- 54W. W. Parish, P. E. Stott, C. W. McCausland and J. S. Bradshaw, J. Org. Chem. 43, 4577 (1978).
- ⁵⁵P. E. Stott, J. S. Bradshaw and W. W. Parish, unpublished observations.
- ⁵⁶A. K. Tashmukhamedova, N. Zh. Saifullina, I. A. Stempneskaya and R. A. Abdulleva, *Bioorg. Khim.* 4, 1232 (1978).
- ⁵⁷J. Smid, B. ElHaj, T. Majewicz, A. Nonni and R. Sintra, Org. Prep. and Procedures 8, 193 (1976).
- 58 K. H. Pannell, W. Yee, G. S. Lewandros and D. C. Hambrick, J. Am. Chem. Soc. 99, 1457 (1977).
- ⁵⁹O. Ryba, E. Knizakova and J. Petranek, Coll. Czech. Chem. Commun. 38, 497 (1973).
- 60 U. Takaki, T. E. Hogen Esch and J. Smid, J. Am. Chem. Soc. 93, 6760 (1971).
- ⁶¹U. Takaki, T. E. Hogen Esch and J. Smid, J. Phys. Chem. 76, 2152 (1972).
- 62 U. Takaki and J. Smid, J. Am. Chem. Soc. 96, 2588 (1974).
- 63 A. K. Tashmukhmedova, R. A. Abdulleva, I. A. Stempnevska, N. Zh. Saifullina and M. T. Adylbekov, Bioorg. Khim. 4, 806 (1978).
- ⁶⁴R. M. Izatt, J. D. Lamb and J. J. Christensen, unpublished observations.
- 65K. Ishizu, H. Kohama and K. Mukai, Chem. Lett. 227 (1978).
- ⁶⁶S. Kopolow, T. E. Hogen Esch and J. Smid, Macromolecules 6, 133 (1973).
- 67 L. W. Frost, U.S. Pat. 3, 956, 136 (11 May 1976).
- ⁶⁴I. A. Alekseeva, V. A. Popova and I. V. Podgornaya, Zh. Oshch. Kim 48, 1630 (1978).
- ⁶⁹F. Vögtle and B. Jansen, Tetrahedron Letters 4895 (1976).
- ⁷⁰M. Bourgoin, K. H. Wong J. Y. Hui and J. Smid, J. Am. Chem. Soc. 97, 3462 (1975).
- ⁷¹F. Vögtle and K. Frensch, Angew. Chem., Int. Ed. Engl. 15, 685 (1976).
- ⁷²R. C. Helgeson, J. M. Timko and D. J. Cram, J. Am. Chem. Soc. 96, 7380 (1974).
- ⁷³R. C. Helgeson, T. L. Tarnowski, J. M. Timko and D. J. Cram, J. Am. Chem. Soc. 99, 6411 (1977).
- ⁷⁴K. H. Wong, G. Konizer and J. Smid, Ibid. 92, 666 (1970).
- ⁷⁵L. Tusek, Com. Naz. Energ. Nucl. [Rayep. Tec.], RT-CHI 74, 17 (1974); [Chem. Abstr. 82 57662q].
- ⁷⁶S. Ikeno, K. Tateno, Y. Iwakuro and K. Uno, Japan Kokai 7405986 (19 January 1974).
- ⁷⁷R. R. Hautala and R. H. Hastings, J. Am. Chem. Soc. 100, 648 (1978).
- ⁷⁸E. Shchori and J. Jagur-Grodzinski, Ibid. 94, 7957 (1972).
- "F. W. Feigenbaum and R. H. Michel, J. Polym. Sci., Part A 9, 817 (1971).
- ⁴⁰A. S. Gomes and C. M. F. Oliveira, Org. Mass. Spect. 12, 407 (1977).
- ¹¹E. Shchori, J. Jagur-Grodzinski and M. Shporer, J. Am. Chem. Soc. 95, 3842 (1973). ¹²K. E. Koenig, R. C. Helgeson and D. J. Cram, *Ibid.* 98, 4018 (1976).
- ⁸³M. Newcomb and D. J. Cram, *Ibid.* 97, 1257 (1975).
- ⁸⁴S. S. Moore, T. L. Tarnowski, M. Newcomb and D. J. Cram, Ibid. 99, 6398 (1977).
- ⁸⁵M. Newcomb, S. S. Moore and D. J. Cram, Ibid. 99, 6405 (1977).
- ³⁶E. Weber and F. Vögtle, Chem. Ber. 109, 1803 (1976).

- ¹⁷D. N. Reinhoudt and R. T. Gray, Tetrahedron Letters 2105 (1975).
- ¹⁸R. T. Gray, D. N. Reinhoudt, C. J. Smit and I. Veenstra, Rec. Trav. Chim. 95, 258 (1976). ¹⁹D. N. Reinhoudt, R. T. Gray, C. J. Smit and I. Veenstra, Tetrahedron 32, 1161 (1976).
- ¹⁰M. A. McKervey and D. L. Mulholland, J. Chem. Soc., Chem. Commun. 438 (1977).
- ¹¹D. N. Reinhoudt, R. T. Gray, F. DeJong and C. J. Smit, Tetrahedron 33, 563 (1977).
- ¹²L. R. Sousa and J. M. Larson, J. Am. Chem. Soc. 99, 307 (1977).
- ¹³N. Kawashima, T. Kawashima, T. Otsubo and S. Misumi, Tetrahedron Letters 5025 (1978).
- ^MH. F. Beckford, R. M. King and J. F. Stoddart, Ibid. 171 (1978).
- ¹⁸J. M. Larson and L. R. Sousa, J. Am. Chem. Soc. 100, 1943 (1978).
- ¹⁶C. R. Newkome, J. D. Sauer, J. M. Roper and D. C. Hager, Chem. Rev. 77, 513 (1977).
- ⁷⁷J. R. Dann, P. P. Chiesa and J. W. Gates, J. Org. Chem. 26, 1991 (1961).
- ¹⁸J. S. Bradshaw and J. Y. K. Hui, J. Heterocycl. Chem. 11, 649 (1974).
- ³⁰C. J. Pedersen, J. Org. Chem. 36, 254 (1971).
- ¹⁰E. Weber and F. Vögtle, Justus Lebigs Ann. Chem. 891 (1976).
- ⁰¹E. Weber, W. Weider and F. Vögtle, Chem. Ber. 109, 1002 (1976).
- ³²E. Weber, R. Nätscher and F. Vögtle, Justus Liebigs Ann. Chem. 924 (1976).
- ¹³R. M. Izatt, R. E. Terry, L. D. Hansen, A. G. Avondet, J. S. Bradshaw, N. K. Dalley, T. E. Jensen and J. J. Christensen, Inorganic Cheim. Acta 30, 1 (1978).
- ¹⁴N. K. Dalley, In Synthetic Multidentate Macrocyclic Compounds (Edited by R. M. Izatt and J. J. Christensen). Academic Press, New York (1978).
- ¹⁵N. K. Dalley, unpublished observations.
- ¹⁶«L. Horner, H. Kunz and P. Walach, Phosphorous 6, 63 (1975); ^bT. A. Del Donno and W. Rosen, J. Am. Chem. Soc. 99, 8051 (1977); ^cE. P. Kyba, C. W. Hudson, M. J. McPhaul and A. M. John, J. Am. Chem. Soc. 99, 8053 (1977); ^cR. E. Davis, C. W. Hudson and E. P. Kyba, Ibid. 100, 3642 (1978).
- ⁵⁷B. Dietrich, Dissertation Université di Strasbourg, 1974.
- ¹⁸J. C. Lockhart and M. E. Thompson, J. Chem. Soc., Perk. Trans. I 202 (1977).
- ¹⁹J. P. Dix and F. Vögtle, Angew. Chem. 90, 893 (1978).
- ¹⁰J. M. Lehn, U.S. Pat. 3,888, 877 (10 June 1975).
- ¹¹E. Blasius and P. G. Maurer, Makromol. Chem. 178, 649 (1977).
- ¹²B. Dietrich, J. M. Lehn and J. P. Sauvage, Tetrahedron Letters 2885 (1969).
- ¹³J. E. Richman and T. J. Atkins, J. Am. Chem. Soc. 96, 2268 (1974).
- ¹⁴W. Rasshofer and F. Vögtle, Justus Liebigs Ann. Chem. 552 (1978).
- ¹⁵W. Rasshofer and F. Vögtle, *Ibid.* 1340 (1977).
- ¹⁶E. Buhleier, W. Rasshofer, W. Wehner, F. Luppertz and F. Vogtle, *Ibid.* 1344 (1977).
- ¹⁷J. C. Lockhart, A. C. Robson, M. E. Thompson, D. Furtado, C. K. Kaura and A. R. Allan, J. Chem. Soc., Perk. Trans. 1 577 (1973).
- ¹⁸J. R. Blackborrow, J. C. Lockhart, D. E. Minnikin, A. C. Robson and M. E. Thompson, J. Chromatog. 107, 380 (1975).
- ¹⁹J. Ashby, R. Hull, M. J. Cooper and E. M. Ramage, Synthetic Commun. 4, 113 (1974).
- ²⁰P. L. Kuo, M. Miki, I. Ikeda and M. Okahara, Tetrahedron Letters, 4273 (1978).
- ²¹W. Rasshofer, W. Wehner and F. Vögtle, Justus Liegis Ann. Chem. 916 (1976).
- ²²G. W. Gokel and B. J. Garcia, Tetrahedron Letters, 317 (1977).
- ²³E. Graf and J. M. Lehn, J. Am. Chem. Soc. 97, 5022 (1975).
- ²⁴J. M. Lehn and F. Montavon, Helv. Chim. Acta 59, 1566 (1976).
- ²⁵S. A. G. Högberg and D. J. Cram, J. Org. Chem. 40, 151 (1975).
- ²⁶M. M. Htay and O. Meth-Cohn, Tetrahedron Letters 79 (1976).
- ²⁷M. M. Htay and O. Meth-Cohn, Ibid. 469 (1976).
- ²⁸J. Hayward, M. Htay and O. Meth-Cohn, Chem. & Ind. 373 (1977).
- ²⁹C. J. Pedersen and H. M. Bromels, U.S. Pat. 3, 847, 949 (12 Nov. 1974).
- ³⁰J. C. Metcalfe and J. F. Stoddart, J. Am. Chem. Soc. 99, 8317 (1977).
- ³¹G. F. Luteri and W. T. Ford, J. Organometal. Chem. 105, 139 (1976).
- ³²F. Vögtle and U. Elben, Chem. Ber. 111, 1434 (1978).
- ³³N. Wester and F. Vögtle, J. Chem. Res(S) 400 (1978); J. Chem. Res (M) 4856 (1978).
- ³⁴C. K. Chang, J. Am. Chem. Soc. 99, 2819 (1977).
- ³⁵M. Takagi, M. Tazaki and K. Ueno, Chem. Lett. 1179 (1978).
- ³⁶M. Cinquini and F. Montanari, J. Chem. Soc., Chem. Commun. 393 (1975).
- ³⁷D. Clement, F. Damm and J. M. Lehn, Heterocycles 5, 477 (1976).
- ³⁰T. Iwachido, M. Minami, A. Sadakane and K. Tuei, Chem. Lett. 1511 (1977).
- ³⁹C. J. Pedersen and H. M. Bromels, U.S. Pat. 4, 031, 111 (21 Jun. 1977).
- ⁴⁰D. Landini, F. Montanari and F. Rolla, Synthesis 223 (1978).
- ⁴¹W. Rasshofer, W. M. Müller, G. Oepen and F. Vögtle, J. Chem. Res(S) 72 (1978); J. Chem. Res. (M) 1001 (1978).
- ⁴²A. Brandi, F. DeSarlo and A. Guarna, J. Chem. Soc., Perk. Trans. I 1827 (1976).
- ⁴³F. DeSarlo, A. Guarna and G. P. Speroni, J. Chem. Soc., Chem. Commun. 549 (1977).
- ⁴⁴F. Vögtle and J. P. Dix, Justus Liebigs Ann. Chem. 1698 (1977).
- ⁴⁵U. Elben and F. Vögtle, J. Chem. Res (M) 3791 (1979).
- ⁴⁶S. J. Leigh and I. O. Sutherland, J. Chem. Soc., Chem. Commun. 414 (1975).
- ⁷⁷L. C. Hodgkinson, S. J. Leigh and I. O. Sutherland, Ibid. 640 (1976).
- 48C. G. Krespan, J. Org. Chem. 40, 1205 (1975).
- ⁹J. L. Dye, M. T. Lok, F. J. Tehan, J. M. Ceraso and K. J. Voorhees, Ibid. 38, 1773 (1973).
- ⁵⁰J. M. Lehn, J. Simon and J. Wagner, Angew. Chem., Int. Ed. Engl. 12, 578 (1973).
- ⁵¹A. H. Alberts, R. Annunziata and J. M. Lehn, J. Am. Chem. Soc. 99, 8502 (1977).
- ⁵²J. Cheney, J. P. Kintzinger and J. M. Lehn, Nouv. J. Chim. 2, 411 (1978).
- ³³J. Cheney, J. M. Lehn, J. P. Sauvage and M. E. Stubbs, J. Chem. Soc., Chem. Commun. 1100 (1972).
- ⁵⁴J. M. Lehn, Accounts Chem. Res. 11, 49 (1978).
- ¹⁵E. Buhleier, K. Frensch, F. Luppertz and F. Vögtle, Justus Liegis Ann. Chem. 1586 (1978).
- ⁵⁶E. Buhleier, W. Wehner and F. Vögtle, Chem. Ber. 111, 200 (1978).

- ¹⁵⁷W. Wehner and F. Vögtle, Tetrahedron Letters, 2603 (1976).
- ¹⁵⁸E. B. Kyba, M. G. Siegel, L. R. Sousa, G. D. Y. Sogah and D. J. Cram, J. Am. Chem. Soc. 95, 2691 (1973).
- ¹³⁹E. B. Kyba, K. Koga, L. R. Sousa, M. G. Siegel, and D. J. Cram, *Ibid.* 95, 2692 (1973).
- ¹⁶⁰F. DeJong, M. G. Siegel and D. J. Cram, J. Chem. Soc., Chem. Commun. 551 (1975).
- ¹⁶¹R. C. Helgeson, K. Koga, J. M. Timko and D. J. Cram, J. Am. Chem. Soc. 95, 3021 (1973).
- ¹⁶²M. Newcomb, G. W. Gokel and D. J. Cram, *Ibid.* 96, 6810 (1974).
- ¹⁶³R. C. Helgeson, J. M. Timko and D. J. Cram, *Ibid.* 95, 3023 (1973).
- 164 R. C. Helgeson, J. M. Timko, P. Moreau, S. C. Peacock, J. M. Mayer and D. J. Cram, Ibid. 96, 6762 (1974).
- ¹⁶⁵L. R. Sousa, G. D. Y. Segah, D. H. Hoffman and D. J. Cram, *Ibid.* 100, 4569 (1978).
- ¹⁶⁶G. Dotsevi, G. D. Y. Sogah and D. J. Cram, *Ibid.* 97, 1259 (1975).
- ¹⁶⁷Y. Chao and D. J. Cram, *Ibid.* 98, 1015 (1976).
- 168 B. Dietrich, J. M. Lehn and J. Simon, Angew. Chem., Int. Ed. Engl. 13, 406 (1974).
- 169 J. M. Lehn, J. Simon and A. Moradpour, Helv. Chim. Acta 61, 2407 (1978).
- ¹⁷⁰E. P. Kyba, G. W. Gokel, F. DeJong, K. Koga, L. R. Sousa, M. G. Siegel, L. Kaplan, G. D. Y. Sogah and D. J. Cram, J. Org. Chem. 42, 4173 (1977).
- ¹⁷¹D. J. Cram, R. C. Helgeson, S. C. Peacock, L. J. Kaplan, L. A. Domier, P. Moreau, K. Koga, J. M. Mayer, Y. Chao, M. G. Siegel, D. H. Hoffman and G. D. Y. Sogah, *Ibid.* 43, 1930 (1978).
- ¹⁷²D. J. Cram, R. C. Helgeson, K. Koga, E. P. Kyba, K. Madan, L. R. Sousa, M. G. Siegel, P. Moreau, G. W. Gokel, J. M. Timko and G. D. Y. Sogah, *Ibid.* 43, 2758 (1978).
- 173 J. M. Girodeau, J. M. Lehn and J. P. Sauvage, Angew. Chem., Int. Ed. Engl. 11, 764 (1975).
- 174W. D. Curtis, D. A. Laidler, J. F. Stoddart and G. H. Jones, J. Chem. Soc., Perk. Trans. 1 1756 (1977).
- ¹⁷⁵T. Matsui and K. Koga, Tetrahedron Letters 1115 (1978).
- 176J. P. Behr, J. M. Lehn and P. Vierling, J. Chem. Soc., Chem. Commun. 621 (1976).
- ¹⁷⁷N. Ando, Y. Yamamoto, J. Oda and Y. Inouye, Synthesis 688 (1978).
- ¹⁷⁸J. M. Lehn and C. Sirlin, J. Chem. Soc., Chem. Commun. 949 (1978).
- ¹⁷⁹J. P. Behr and J. M. Lehn, *Ibid.* 143 (1978).
- ¹⁸⁰D. A. Laidler and J. F. Stoddart, J. Chem. Soc., Chem. Commun. 481 (1977); and D. A. Laidler and J. F. Stoddart, Carbohydrate Res. 55, C1-C4 (1977).
- ¹⁸¹L. Toke, L. Fenichel, P. Bako and J. Szejtli, Acta Chim. Acad. Sci., Hung. 98, 357 (1978).
- 182 R. C. Hayward, C. H. Overton and G. H. Whitham, J. Chem. Soc., Perk. Trans. I 2413 (1976).
- 183 F. Wudl and F. Gaeta, J. Chem. Soc., Chem. Commun. 107 (1972).
- ¹⁴⁴E. Blasius, K. P. Jangen, W. Adrian, G. Klautke, R. Lorscheider, P. G. Maurer, V. G. Nguyen, T. Nguyen Tien, G. Scholten and J. Stockerer, Z. Anal. Chem. 284, 337 (1977).
- ¹⁸⁵E. Blasius, K. P. Janzen and W. Neumann, Mikrochimia Acta 279 (1977).
- ¹⁸⁶E. Blasius, W. Adrian, K. P. Janzen and G. Klautke, J. Chromatog. 96, 89 (1974).
- 1875. L. Davydova, V. A. Barabanov, N. V. Alymova and N. A. Plate, Izv. Akad. Nauk SSSR, Ser. Khim. 1441 (1975).
- 188 H. Molinari, F. Montanari and P. Tundo, J. Chem. Soc., Chem. Commun. 639 (1977).
- 189 M. S. Volkova, T. M. Kiselva and M. M. Koton, Vysokomol. Soedin., Ser. B 19, 743 (1977); [Chem. Abstr. 88: 38183s (1978)].
- 190 T. N. Kudrya, A. S. Shtepanek and A. V. Kirsanov, Zh. Obshch. Khim. 48, 927 (1978).
- ¹⁹¹N. I. Liptuga, L. F. Irodionova and M. O. Lozinskii, *Ibid.* 48, 1185 (1978).
- ¹⁹²A. H. Alberts and D. J. Cram, J. Chem. Soc., Chem. Commun. 958 (1976).
- ¹⁹³A. H. Alberts and D. J. Cram, J. Am. Chem. Soc. 99, 3880 (1977).
- ¹⁹⁴J. M. Lehn, E. Sonveaux and A. K. Willard, Ibid. 100, 4914 (1978).
- ¹⁹⁵E. Graf and J. M. Lehn, J. Am. Chem. Soc. 98, 6403 (1976).
- ¹⁹⁶B. Dietrich, T. M. Fyles, J. M. Lehn, L. G. Pease and D. L. Fyles, J. Chem. Soc., Chem. Commun. 934 (1978).
- ¹⁹⁷H. K. Frensdorff, J. Am. Chem. Soc. 93, 600 (1971).
- ¹⁹⁸J. M. Timko, R. C. Helgeson, M. Newcomb, G. W. Gokel and D. J. Cram, *Ibid.* 96, 7097 (1974).
- ¹⁹⁹G. Chaput and G. Jeminet, Can. J. Chem. 53, 2240 (1975).
- ²⁰⁰R. A. Bartsch and P. N. Juri, Tetrahedron Letters 407 (1979).
- ²⁰¹D. L. Hughes and J. N. Wingfield, J. Chem. Soc., Chem. Commun. 1001 (1978).
- 202W. M. Oepen, J. P. Dix and F. Vögtle, Justus Liebigs Ann. Chem. 1592 (1978).
- ²⁰³W. Rasshofer and F. Vögle, Tetrahedron Letters, 309 (1978).
- ²⁰⁴B. Tummler, G. Maass, E. Weber, W. Wehner and F. Vogtle, J. Am Chem. Soc. 99, 4683 (1977).
- ²⁰⁵E. Weber and F. Vögtle, Tetrahedron Letters, 2415 (1975).
- ²⁰⁶H. Lehmkuhl, F. Rabet and K. Hauschild, Synthesis 184 (1977).
- 207 N. Yamazaki, S. Nakahama, A. Hirao and S. Negi, Tetrahedron Letters, 2429 (1978).
- 208 S. Yanagida, K. Takahashi and M. Okahara, Bull. Chem. Soc., Jpn 51, 3111 (1978).
- ²⁰⁹S. Yanagida, K. Takahashi and M. Okahara, Bull. Chem. Soc., Jpn 50, 1386 (1977).
- ²¹⁰F. Kh, Agaev, I. M. Abdullabekov, M. M. Movsumzade and A. L. Shabanov, Azerb. Khim Zh. 39 (1977); [Chem. Abstr. 87: 117514h (1977)].
- ²¹¹M. M. Movsumzade, A. L. Shabanov and F. Kh. Agaev, Zh. Org. Khim. 12, 2477 (1976); [Chem. Abstr. 86: 71795z (1977)].
- ²¹²A. Hirao, S. Nakahama, M. Takahashi and N. Yamazaki, Makromol. Chem. 179, 915 (1978).
- ²¹³A. Hirao, S. Nakahama, M. Takahashi and N. Yamazaki, Ibid. 179, 1735 (1978).
- ²¹⁴A. Hirao, S. Nakahama, M. Takahashi, H. Mochizaki and N. Yamazaki, Ibid. 179, 2343 (1978).
- ²¹⁵R. Büchi, E. Pretsch and W. Simon, Tetrahedron Letters, 1709 (1976).
- ²¹⁶R. Büchi, E. Pretsch, W. E. Morf and W. Simon, Helv. Chim. Acta 59, 2407 (1976).
- ²¹⁷M. Güggi, M. Oehme, E. Pretsch and W. Simon, Ibid. 59, 2417 (1976).
- ²¹⁸N. N. L. Kirsch, R. J. J. Funck, E. Pretsch and W. Simon, *Ibid.* 60, 2326 (1977).